Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dong-An Wang is active.

Publication


Featured researches published by Dong-An Wang.


Tissue Engineering Part B-reviews | 2009

Synovium-Derived Mesenchymal Stem Cells: A New Cell Source for Musculoskeletal Regeneration

Jiabing Fan; Rohan R. Varshney; Li Ren; Daozhang Cai; Dong-An Wang

Ever since synovium-derived mesenchymal stem cells (SMSCs) were first identified and successfully isolated in 2001, as a brand new member in MSC families, they have been increasingly regarded as a promising therapeutic cell species for musculoskeletal regeneration, particularly for reconstructions of cartilage, bones, tendons, and muscles. Besides the general multipotency in common among the MSC community, SMSCs excel other sourced MSCs in higher ability of proliferation and superiority in chondrogenesis. This review summarizes the latest advances in SMSC-related studies covering their specific isolation methodologies, biological insights, and practical applications in musculoskeletal therapeutics of which an emphasis is cast on engineered chondrogenesis.


Trends in Biotechnology | 2008

Tendon tissue engineering using scaffold enhancing strategies

Yang Liu; H.S. Ramanath; Dong-An Wang

Tendon traumas or diseases are prevalent and debilitating lesions that affect the quality of life among populations worldwide. As a novel solution, tendon tissue engineering aims to address these lesions by integrating engineered, living substitutes with their native counterparts in vivo, thereby restoring the defective functions in situ. For such a purpose, competent scaffolding materials are essential. To date, three major categories of scaffolding materials have been employed: polyesters, polysaccharides, and collagen derivatives. Furthermore, with these materials as a base, a variety of specialized methodologies have been developed or adopted to enhance neo-tendogenesis. These strategies include cellular hybridization, interfacing improvement, and physical stimulation.


Expert Opinion on Biological Therapy | 2011

Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine

Ting Ting Lau; Dong-An Wang

Introduction: Stromal cell-derived factor-1α (SDF-1) is a chemokine that plays a major role in cell trafficking and homing of CD34+ stem cells. Studies employing SDF-1/CXCR4 have demonstrated its therapeutic potential in tissue engineering. During injury, cells from the injured organ highly express SDF-1, which causes an elevation of localized SDF-1 levels. This leads to recruitment and retention of circulating CD34+ progenitor cells at the injury site via chemotactic attraction toward a gradient of SDF-1. The general approaches for SDF-1 introduction in tissue engineering are direct protein incorporation into scaffolds and transplantation of SDF-1-overexpressing cells and both methods are successful in improving the regeneration of the damaged tissue/organ. Areas covered: The mechanisms of SDF-1-mediated homing via CXCR4 receptor and the success of SDF-1-based medical applications in mesenchymal stem cell (MSC) homing as well as areas such as therapeutic angiogenesis, wound healing and neuronal and liver regeneration. Expert opinion: Current SDF-1 delivery designs and platforms hold much room for improvement. Regardless of the different techniques of SDF-1 introduction, they have proved to be effective in recruitment of various stem/progenitor cells. The pursuit of SDF-1-related regenerative medicine has already begun. It is thus conceivable that its usage in the clinical setting will be a reality in the near future.


Pharmaceutical Research | 2009

Enhancing Alendronate Release from a Novel PLGA/Hydroxyapatite Microspheric System for Bone Repairing Applications

Xuetao Shi; Yingjun Wang; Li Ren; Yihong Gong; Dong-An Wang

PurposeThe goal of this study was to exploit the multifunction of PLGA based microsphere as efficient alendronate delivery and also as potential injectable cell carrier for bone-repairing therapeutics.Materials and MethodsNovel poly (lactic-co-glycolic acid) (PLGA)-hybridizing -hydroxyapatite (HA) microspheres loaded with bisphosphonate-based osteoporosis preventing drugs, alendronate (AL), are prepared with solid/oil/water (s/o/w) or water/oil/water (w/o/w) technique. Macrophage resistance was evaluated by MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, DNA assay and Live/dead staining, and osteoblast proliferation and maturation was assessed by MTT assay, Alkaline phosphatase (ALP) activity assay and Real time-PCR.ResultsIn such fabricated AL laden PLGA/HA microspheric composites (abbreviated “PLGA/HA-AL”), the introduction of HA component has been proven capable of largely enhancing drug encapsulation efficiency especially when the single emulsion protocol is adopted. The in-vitro drug (AL) releasing profile of PLGA/HA-AL system was plotted basing over 30 days’ data collection. It indicates a sustained releasing tendency despite a minimal burst at the very beginning. The in-vitro bone-repairing efficacy of PLGA/HA-AL system was first tested with macrophages that are identified as precursors of osteoclasts and potentially responsible for osteoporosis. The results indicated that the AL release significantly inhibited the growth of macrophages. Additionally, as a central executor for osteogenesis, osteoblasts were also treated with PLGA/HA-AL system in vitro. The outcomes confirmed that this controlled release system functions to improve osteoblast proliferation and also enables upregulation of a key osteogenic enzyme ALP.ConclusionsBy pre-resisting osteoclastic commitment and promoting osteoblastic development in vitro, this newly designed PLGA/HA-AL controlled release system is promoting for bone-repairing therapeutics.


Acta Biomaterialia | 2009

Novel mesoporous silica-based antibiotic releasing scaffold for bone repair.

Xuetao Shi; Yingjun Wang; Li Ren; Naru Zhao; Yihong Gong; Dong-An Wang

Tissue engineering scaffolds with a micro- or nanoporous structure and able to deliver special drugs have already been confirmed to be effective in bone repair. In this paper, we first evaluated the biomineralization properties and drug release properties of a novel mesoporous silica-hydroxyapatite composite material (HMS-HA) which was used as drug vehicle and filler for polymer matrices. Biomineralization can offer a credible prediction of bioactivity for the synthetic bone regeneration materials. We found HMS-HA exhibited good apatite deposition properties after being soaked in simulated body fluid (SBF) for 7 days. Drug delivery from HMS-HA particle was in line with Ficks law, and the release process lasted 12 h after an initial burst release with 60% drug release. A novel tissue engineering scaffold with the function of controlled drug delivery was developed, which was based on HMS-HA particles, poly(lactide-co-glycolide) (PLGA) and microspheres sintering techniques. Mechanical testing on compression, degradation behavior, pH-compensation effect and drug delivery behavior of PLGA/HMS-HA microspheres sintered scaffolds were analyzed. Cell toxicity and cell proliferation on the scaffolds was also evaluated. The results indicated that the PLGA/HMS-HA scaffolds could effectively compensate the increased pH values caused by the acidic degradation product of PLGA. The compressive strength and modulus of PLGA/HMS-HA scaffolds were remarkably high compared to pure PLGA scaffold. Drug delivery testing of the PLGA/HMS-HA scaffolds indicated that PLGA slowed gentamycin sulfate (GS) release from HMS-HA particles, and the release lasted for nearly one month. Adding HMS-HA to PLGA scaffolds improved cytocompatibility. The scaffolds demonstrated low cytotoxicity, and supported mesenchymal stem cells growth more effectively than pure PLGA scaffolds. To summarize, the data supports the development of PLGA/HMS-HA scaffolds as potential degradable and drug delivery materials for bone replacement.


Biomaterials | 2009

In-vitro osteogenesis of synovium stem cells induced by controlled release of bisphosphate additives from microspherical mesoporous silica composite.

Xuetao Shi; Yingjun Wang; Rohan R. Varshney; Li Ren; Feng Zhang; Dong-An Wang

In this study, in-vitro osteogenesis was successfully induced in the highly chondrogenic synovium mesenchymal stem cells (SMSCs) by controlled release of a nitrogenous bisphosphonate additive--alendronate (AL) from a mesoporous silica (MS)-hydroxyapatite (HA) composite that was mediated in poly(lactic-co-glycolic acid) (PLGA) microspheres. This microspherical based controlled release system is constructed with three levels of degradable structures: (1) the AL drug was first hybridized with HA nanoparticles; (2) the HA-AL complexes were filled into the mesopores of MS particles by self-assembly in situ; and (3) the HA-AL-laden MS constructs (MSH-AL) were built in the bulk of PLGA microspheres. In comparison with any mono-component construct, the superiority of this multi-component system comes from two aspects of functionalities: (1) significantly greater loading capacity of the extremely hydrophilic drug-AL; and (2) better controlled profile of AL release. Based on this newly developed PLGA/MSH-AL releasing system, as recipients the SMSCs, which usually exhibit exclusively high chondrogenesis, demonstrated a strong osteogenic commitment. The results were verified by alkaline phosphatase (ALP) activity assay, calcium secretion assay, real time PCR and immunohistochemistry analysis. Considering the renewable source and high proliferative profile of SMSCs, the achievement of engineered SMSC osteogenesis with this PLGA/MSH-AL controlled release system would open a new door to major bony reparation and regeneration.


Biomaterials | 2003

Albumin and fibrinogen adsorption on PU-PHEMA surfaces

Ma Cristina L. Martins; Dong-An Wang; Jian Ji; Linxian Feng; Mário A. Barbosa

Materials that adsorb specific proteins may find a variety of applications in the biomedical field. The aim of this study was the preparation of a hydrophilic surface, with low protein adsorption, to be used in the future as a support for the immobilisation of several species, e.g. Cibacron Blue F3G-A, which has been described to induce specific albumin adsorption. Poly(hydroxyethylmethacrylate) (PHEMA) and poly(hydroxyethylacrylate) (PHEA) were chosen as the hydrophilic surface because they can be easily polymerised and possess hydroxyl groups that can be used for the immobilisation of different compounds. Thin films of PHEMA and PHEA were successfully graft polymerised onto the surface of a commercial poly(etherurethane) (PU) using ceric ion as initiator. Grafting polymerisations were followed by mass gain and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Since stability tests demonstrated that only PU-PHEMA was stable in alkaline solutions, a necessary condition to future immobilisations, the investigation was focused on the coating of PU with PHEMA. PU-PHEMA films were characterised in detail using several techniques as mass gain, ATR-FTIR, contact angle measurements, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Protein adsorption was evaluated using radiolabelled albumin and fibrinogen from pure solutions and from mixtures of both proteins. PU surfaces modified with PHEMA have demonstrated low protein adsorption, showing their potential use as substrates. This opens the possibly of exploring the advantages of selective adsorption by appropriate immobilisation of specific molecules.


Biomaterials | 2009

The control of anchorage-dependent cell behavior within a hydrogel/ microcarrier system in an osteogenic model

Chunming Wang; Yihong Gong; Yuan Zhong; Yongchang Yao; Kai Su; Dong-An Wang

The use of injectable hydrogels for tissue engineering purposes such as bone regeneration has been hampered by the mass depletion of cells after encapsulation, due to the lack of a proper interface between hydrogel matrices and osteo-progenitor cells. Efforts to graft bioactive molecules as cell attachment moieties have achieved limited success. In this study, we devised a solution to promote cellular focal adhesion within hydrogels, and elicit the mechanism behind cellular survival/death therein. We found that the fulfillment of ligation between cellular integrins and extracellular ligands, instead of the expression of integrins per se, is essential to avoid apoptosis in gel-encapsulated anchorage-dependent cells (ADCs). Absence of such ligation brought about mass cell death in our osteogenic model with osteoblasts (as representative of ADCs) and failure of osteogenic commitment of mesenchymal stem cells (as representative of anchorage-dependent progenitors). We have designed a gel-based composite system that works as a suspension of injectable cell-laden microcarriers in hydrogel, as compared to the conventional cell-suspended hydrogels. Injectable microscopic anchors (microcarriers) not only provide platforms for cellular focal adhesion but also facilitate the cells to overcome gel enlacement and fully spread out into their natural morphology. Further in vitro and in vivo osteogenic investigations show the composites to be a competent potential injectable vehicle for the conveyance of ADCs and regenerations of bone and other tissues.


Journal of Materials Chemistry | 2009

An improved injectable polysaccharide hydrogel: modified gellan gum for long-term cartilage regeneration in vitro

Yihong Gong; Chunming Wang; Ruenn Chai Lai; Kai Su; Feng Zhang; Dong-An Wang

Polysaccharide-based hydrogels have been proven promising in tissue engineering applications due to their good biocompatibility, controllable properties and abundance, and are therefore in great demand as therapeutic cell vehicles. Gellan gum, a natural polysaccharide and FDA-approved food additive, has been well exploited in food and pharmaceutical industries. For tissue engineering purposes, however, gellan-based hydrogels need to be modified in order to meet the requirement of encapsulating living cells while maintaining their injectability, because the gelling point of this temperature-dependent gel is too high (above 42 °C). This study started from chemically scissoring (via oxidative cleavage) the gellan backbones to optimize the gelation temperature for injection as a result of down-regulating their molecular size. Chondrocytes were then seeded into the modified gellan gels, the cytocompatibility and the capability to promote in vitrotissue regeneration of which were evaluated. Notably, chondrocytic constructs based on modified gellan gel were kinetically monitored for 150 days in comparison with those based on agarose gel, showing superiority for long-term cartilaginous development in terms of many aspects such as cell proliferation and specific matrix formation. Biochemical analysis, histological staining, and immunofluorescent observation indicate that the modified gellan is able to retain the chondrocytes viability, enhance the extracellular matrix (ECM) secretion and maintain normal phenotype, which demonstrates that gellan is a potential and promising injectable vehicle for therapeutic chondrocyte delivery.


Acta Biomaterialia | 2010

In vitro engineered cartilage using synovium-derived mesenchymal stem cells with injectable gellan hydrogels

Jiabing Fan; Yihong Gong; Li Ren; Rohan R. Varshney; Daozhang Cai; Dong-An Wang

Synovium-derived mesenchymal stem cells (SMSC), a novel line of stem cells, are regarded as a promising cell source for cartilage tissue engineering. The goal of this study was to investigate rabbit SMSC coupled with injectable gellan hydrogels for in vitro engineered cartilage. SMSC were isolated from rabbit synovial tissue, amplified to passage 4 in monolayer, and encapsulated in injectable gellan hydrogels, constructs of which were cultured in chondrogenic medium supplemented with TGF-beta1, TGF-beta3 or BMP-2 for up to 42 days. The quality of the constructs was assessed in terms of cell proliferation and chondrocytic gene/protein expression using WST-1 assay, real-time RT-PCR, biochemical analysis, histology and immunohistochemical analysis. Results indicate that the viability of SMSC in hydrogels treated with TGF-beta1, TGF-beta3 and BMP-2 remained high at culture time. The constructs formed cartilaginous tissue with the expression of chondrocytic genes (collagen type II, aggrecan, biglycan, SOX 9) and cartilaginous matrix (sulphated glycosaminoglycan and collagen) as early as 21 days in culture. Both TGF-beta1 and TGF-beta3 treated SMSC-laden hydrogels showed more chondrogenesis compared with BMP-2 treated SMSC-laden hydrogels. It demonstrates that injectable SMSC-laden gels, when treated with TGF-beta1, TGF-beta3 or BMP-2, are highly competent for in vitro engineered cartilage formation, which lays a foundation for their potential application in clinical cartilage repair.

Collaboration


Dive into the Dong-An Wang's collaboration.

Top Co-Authors

Avatar

Kai Su

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Feng Zhang

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Ting Ting Lau

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Yihong Gong

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Ren

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yingjun Wang

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yongchang Yao

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rohan R. Varshney

Nanyang Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge