Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dong-Hyun Youn is active.

Publication


Featured researches published by Dong-Hyun Youn.


Evidence-based Complementary and Alternative Medicine | 2013

Interaction of Veratrum nigrum with Panax ginseng against Obesity: A Sang-ban Relationship

Jinbong Park; Yong-Deok Jeon; Hye-Lin Kim; Hara Lim; Yunu Jung; Dong-Hyun Youn; Mi-Young Jeong; H.M. Kim; Sung-Hoon Kim; Su-Jin Kim; Seung-Heon Hong; Jae-Young Um

Obesity has become a major health threat in developed countries. However, current medications for obesity are limited because of their adverse effects. Interest in natural products for the treatment of obesity is thus rapidly growing. Korean Medicine (KM) is characterized by the wide use of herbal formulas. However, the combination rule of herbal formulas in KM lacks experimental evidence. According to Shennongs Classic of Materia Medica, the earliest book of herbal medicine, Veratrum nigrum (VN) has antagonistic features against Panax ginseng (PG), and the PG-VN pair is strictly forbidden. In this study, we have shown the effects of PG, VN, and their combination on obesity in high-fat (HF) diet-induced obese mice and in 3T3-L1 cells. PG, VN, and PG-VN combination significantly reduced weight gain and the fat pad weight in HF diet-induced obese mice. They also significantly decreased lipid accumulation and the expressions of two major adipogenesis factors, PPARγ and C/EBPα, in 3T3-L1 cells. In addition, the PG-VN combination had synergistic effects compared with the mixture of extracts of PG and VN on inhibition of PPARγ and C/EBPα expressions at lower doses. These results indicate a new potential anti-obese pharmacotherapy and also provide scientific evidence supporting the usage of herbal combinations instead of mixtures in KM.


Journal of Cellular Biochemistry | 2016

Arctigenin Inhibits Adipogenesis by Inducing AMPK Activation and Reduces Weight Gain in High-Fat Diet-Induced Obese Mice.

Yo-Han Han; Ji-Ye Kee; Jinbong Park; Hye-Lin Kim; Mi-Young Jeong; Dae-Seung Kim; Yong-Deok Jeon; Yunu Jung; Dong-Hyun Youn; JongWook Kang; Hong-Seob So; Raekil Park; Jong-Hyun Lee; Soyoung Shin; Su-Jin Kim; Jae-Young Um; Seung-Heon Hong

Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti‐inflammation, anti‐cancer, and antioxidant, there have been no reports on the anti‐obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti‐obesity effect and mediates the AMP‐activated protein kinase (AMPK) pathway. We investigated the anti‐adipogenic effect of ARC using 3T3‐L1 pre‐adipocytes and human adipose tissue‐derived mesenchymal stem cells (hAMSCs). In high‐fat diet (HFD)‐induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD‐induced obese mice. ARC also inhibited the expression of peroxisome proliferator‐activated receptor gamma (PPARγ) and CCAAT/enhancer‐binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down‐modulation of adipogenesis‐related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid‐binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067–2077, 2016.


Journal of Agricultural and Food Chemistry | 2015

Platycodon grandiflorum A. De Candolle Ethanolic Extract Inhibits Adipogenic Regulators in 3T3-L1 Cells and Induces Mitochondrial Biogenesis in Primary Brown Preadipocytes

Hye-Lin Kim; Jinbong Park; Hyewon Park; Yunu Jung; Dong-Hyun Youn; JongWook Kang; Mi-Young Jeong; Jae-Young Um

This study was designed to evaluate the effects of Platycodon grandiflorum A. DC. ethanolic extract (PG) on obesity in brown/white preadipocytes. The effect of PG on the differentiation and mitochondrial biogenesis of brown adipocytes is still not examined. An in vivo study showed that PG induced weight loss in mice with high-fat-diet-induced obesity. PG successfully suppressed the differentiation of 3T3-L1 cells by down-regulating cellular induction of the peroxisome proliferators activated receptor γ (PPARγ), CCAAT enhancer binding protein α (C/EBPα), lipin-1, and adiponectin but increasing expression of silent mating type information regulation 2 homologue 1 (SIRT1) and the phosphorylation of AMP-activated protein kinase α (AMPKα). The effect of PG on the adipogenic factors was compared with that of its bioactive compound platycodin D. In addition, PG increased expressions of mitochondria-related genes, including uncoupling protein 1 (UCP1), peroxisome proliferator activated receptor-coactivator 1 α (PGC1α), PR domain containing 16 (PRDM16), SIRT3, nuclear respiratory factor (NRF), and cytochrome C (CytC) in primary brown adipocytes. These results indicate that PG stimulates the differentiation of brown adipocytes through modulation of mitochondria-related genes and could offer clinical benefits as a supplement to treat obesity.


Journal of Ginseng Research | 2017

Korean Red Ginseng improves atopic dermatitis-like skin lesions by suppressing expression of proinflammatory cytokines and chemokines in vivo and in vitro

Ji-Ye Kee; Yong-Deok Jeon; Dae-Seung Kim; Yo-Han Han; Jinbong Park; Dong-Hyun Youn; Su-Jin Kim; Kwang Seok Ahn; Jae-Young Um; Seung-Heon Hong

Background The prevalence of allergic inflammatory diseases such as atopic dermatitis (AD), asthma, and allergic rhinitis worldwide has increased and complete recovery is difficult. Korean Red Ginseng, which is the heat-processed root of Panax ginseng Meyer, is widely and frequently used as a traditional medicine in East Asia. In this study, we investigated whether Korean Red Ginseng water extract (RGE) regulates the expression of proinflammatory cytokines and chemokines via the mitogen-activated protein kinases (MAPKs)/nuclear factor kappa B (NF-κB) pathway in allergic inflammation. Methods Compound 48/80-induced anaphylactic shock and 1-fluoro-2,4-dinitrobenzene (DNFB)-induced AD-like skin lesion mice models were used to investigate the antiallergic effects of RGE. Human keratinocytes (HaCaT cells) and human mast cells (HMC-1) were also used to clarify the effects of RGE on the expression of proinflammatory cytokines and chemokines. Results Anaphylactic shock and DNFB-induced AD-like skin lesions were attenuated by RGE administration through reduction of serum immunoglobulin E (IgE) and interleukin (IL)-6 levels in mouse models. RGE also reduced the production of proinflammatory cytokines including IL-1β, IL-6, and IL-8, and expression of chemokines such as IL-8, thymus and activation-regulated chemokine (TARC), and macrophage-derived chemokine (MDC) in HaCaT cells. Additionally, RGE decreased the release of tumor necrosis factor-α (TNF-α), IL-1β, IL-6, and IL-8 as well as expressions of chemokines including macrophage inflammatory protein (MIP)-1α, MIP-1β, regulated on activation, normal T cell expressed and secreted (RANTES), monocyte chemoattractant protein (MCP)-1, and IL-8 in HMC-1 cells. Furthermore, our data demonstrated that these inhibitory effects occurred through blockage of the MAPK and NF-κB pathway. Conclusion RGE may be a useful therapeutic agent for the treatment of allergic inflammatory diseases such as AD-like dermatitis.


Oncotarget | 2017

Chrysophanic acid reduces testosterone-induced benign prostatic hyperplasia in rats by suppressing 5α-reductase and extracellular signal-regulated kinase

Dong-Hyun Youn; Jinbong Park; Hye-Lin Kim; Yunu Jung; JongWook Kang; Mi-Young Jeong; Gautam Sethi; Kwang Seok Ahn; Jae-Young Um

Benign prostatic hyperplasia (BPH) is one of the most common chronic diseases in male population, of which incidence increases gradually with age. In this study, we investigated the effect of chrysophanic acid (CA) on BPH. BPH was induced by a 4-week injection of testosterone propionate (TP). Four weeks of further injection with vehicle, TP, TP + CA, TP + finasteride was carried on. In the CA treatment group, the prostate weight was reduced and the TP-induced histological changes were restored as the normal control group. CA treatment suppressed the TP-elevated prostate specific antigen (PSA) expression. In addition, 5α-reductase, a crucial factor in BPH development, was suppressed to the normal level close to the control group by CA treatment. The elevated expressions of androgen receptor (AR), estrogen receptor α and steroid receptor coactivator 1 by TP administration were also inhibited in the CA group when compared to the TP-induced BPH group. Then we evaluated the changes in three major factors of the mitogen-activated protein kinase chain during prostatic hyperplasia; extracellular signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38). While ERK was elevated in the process of BPH, JNK and p38 was not changed. This up-regulated ERK was also reduced as normal by CA treatment. Further in vitro studies with RWPE-1 cells confirmed TP-induced proliferation and elevated AR, PSA and p-ERK were all reduced by CA treatment. Overall, these results suggest a potential pharmaceutical feature of CA in the treatment of BPH.


Frontiers in Pharmacology | 2017

Farnesol Has an Anti-obesity Effect in High-Fat Diet-Induced Obese Mice and Induces the Development of Beige Adipocytes in Human Adipose Tissue Derived-Mesenchymal Stem Cells

Hye-Lin Kim; Yunu Jung; Jinbong Park; Dong-Hyun Youn; JongWook Kang; Seona Lim; Beom Su Lee; Mi-Young Jeong; Seong-Kyu Choe; Raekil Park; Kwang Seok Ahn; Jae-Young Um

Brown adipocytes dissipate energy as heat and hence have an important therapeutic capacity for obesity. Development of brown-like adipocytes (also called beige) is also another attractive target for obesity treatment. Here, we investigated the effect of farnesol, an isoprenoid, on adipogenesis in adipocytes and on the browning of white adipose tissue (WAT) as well as on the weight gain of high-fat diet (HFD)-induced obese mice. Farnesol inhibited adipogenesis and the related key regulators including peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α through the up-regulation of AMP-activated protein kinase in 3T3-L1 murine adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). Farnesol markedly increased the expression of uncoupling protein 1 and PPARγ coactivator 1 α in differentiated hAMSCs. In addition, farnesol limited the weight gain in HFD obese mice and induced the development of beige adipocytes in both inguinal and epididymal WAT. These results suggest that farnesol could be a potential therapeutic agent for obesity treatment.


Frontiers in Pharmacology | 2016

Chrysophanic Acid Suppresses Adipogenesis and Induces Thermogenesis by Activating AMP-activated Protein Kinase Alpha in vivo and in vitro

Hara Lim; Jinbong Park; Hye-Lin Kim; JongWook Kang; Mi-Young Jeong; Dong-Hyun Youn; Yunu Jung; Yong-Il Kim; H. M. Kim; Kwang Seok Ahn; Su-Jin Kim; Seong-Kyu Choe; Seung-Heon Hong; Jae-Young Um

Chrysophanic acid (CA) is a member of the anthraquinone family abundant in rhubarb, a widely used herb for obesity treatment in Traditional Korean Medicine. Though several studies have indicated numerous features of CA, no study has yet reported the effect of CA on obesity. In this study, we tried to identify the anti-obesity effects of CA. By using 3T3-L1 adipocytes and primary cultured brown adipocytes as in vitro models, high-fat diet (HFD)-induced obese mice, and zebrafish as in vivo models, we determined the anti-obesity effects of CA. CA reduced weight gain in HFD-induced obese mice. They also decreased lipid accumulation and the expressions of adipogenesis factors including peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in 3T3-L1 adipocytes. In addition, uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), the brown fat specific thermogenic genes, were up-regulated in brown adipocytes by CA treatment. Furthermore, when co-treated with Compound C, the AMP-activated protein kinase (AMPK) inhibitor, the action of CA on AMPKα was nullified in both types of adipocytes, indicating the multi-controlling effect of CA was partially via the AMPKα pathway. Given all together, these results indicate that CA can ameliorate obesity by controlling the adipogenic and thermogenic pathway at the same time. On these bases, we suggest the new potential of CA as an anti-obese pharmacotherapy.


Metabolism-clinical and Experimental | 2017

Albiflorin ameliorates obesity by inducing thermogenic genes via AMPK and PI3K/AKT in vivo and in vitro

Mi-Young Jeong; Jinbong Park; Dong-Hyun Youn; Yunu Jung; JongWook Kang; Seona Lim; Min-Woo Kang; Hye-Lin Kim; Hong-Seob So; Raekil Park; Seung-Heon Hong; Jae-Young Um

OBJECTIVE Brown adipose tissue (BAT) activation has been identified as a possible target to treat obesity and to protect against metabolic diseases by increasing energy consumption. We explored whether albiflorin (AF), a natural compound, could contribute to lowering the high risk of obesity with BAT and primary brown preadipocytes in vivo and in vitro. MATERIALS/METHODS Human adipose tissue-derived mesenchymal stem cells (hAMSCs) were cultured with adipogenic differentiation media with or without AF. Male C57BL/6J mice (n=5 per group) were fed a high-fat diet (HFD) for six weeks with or without AF. Brown preadipocytes from the interscapular BAT of mice were cultured with or without AF. RESULTS In white adipogenic differentiation of hAMSCs, AF treatment significantly reduced the formation of lipid droplets and the expression of adipogenesis-related genes. In HFD-induced obese C57BL/6J mice, AF treatment significantly reduced body weight gain as well as the weights of the white adipose tissue, liver and spleen. Furthermore, AF induced the expression of genes involved in thermogenic function in BAT. In primary brown adipocytes, AF effectively stimulated the expressions of thermogenic genes and markedly up-regulated the AMP-activated protein kinase (AMPK) signaling pathway. Pretreatment with phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 nullified the induction of the thermogenic genes by AF in primary brown adipocytes. Moreover, AF activated beige cell marker genes induced by the pharmacological activation of peroxisome proliferator-activated receptor γ in hAMSCs. CONCLUSION This study shows that AF prevents the development of obesity in hAMSCs and mice fed an HFD and that it is also capable of stimulating the differentiation of brown adipocytes through the modulation of thermogenic genes by AMPK and PI3K/AKT.


Scientific Reports | 2016

Cinnamomi Cortex (Cinnamomum verum) Suppresses Testosterone-induced Benign Prostatic Hyperplasia by Regulating 5α-reductase.

Hyun-Myung Choi; Yunu Jung; Jinbong Park; Hye-Lin Kim; Dong-Hyun Youn; JongWook Kang; Mi-Young Jeong; Jong-Hyun Lee; Woong Mo Yang; Seok-Geun Lee; Kwang Seok Ahn; Jae-Young Um

Cinnamomi cortex (dried bark of Cinnamomum verum) is an important drug in Traditional Korean Medicine used to improve blood circulation and Yang Qi. Benign prostatic hyperplasia (BPH) is a common chronic disease in aging men. This study was conducted to determine the effect of Cinnamomi cortex water extract (CC) on BPH. BPH was induced by a pre-4-week daily injection of testosterone propionate (TP). Six weeks of further injection with (a) vehicle, (b) TP, (c) TP + CC, (d) TP + finasteride (Fi) was carried on. As a result, the prostate weight and prostatic index of the CC treatment group were reduced. Histological changes including epithelial thickness and lumen area were recovered as normal by CC treatment. The protein expressions of prostate specific antigen, estrogen receptor α (ERα), androgen receptor (AR), 5α-reductase (5AR), and steroid receptor coactivator 1 were suppressed by treatment of CC. Immunohistochemical assays supported the western blot results, as the expressions of AR and ERα were down-regulated by CC treatment as well. Further in vitro experiments showed CC was able to inhibit proliferation of RWPE-1 cells by suppressing 5AR and AR. These results all together suggest CC as a potential treatment for BPH.


Evidence-based Complementary and Alternative Medicine | 2016

Veratri Nigri Rhizoma et Radix (Veratrum nigrum L.) and Its Constituent Jervine Prevent Adipogenesis via Activation of the LKB1-AMPKα-ACC Axis In Vivo and In Vitro

Jinbong Park; Yong-Deok Jeon; Hye-Lin Kim; Dae-Seung Kim; Yo-Han Han; Yunu Jung; Dong-Hyun Youn; JongWook Kang; Daeyeon Yoon; Mi-Young Jeong; Jong-Hyun Lee; Seung-Heon Hong; Junhee Lee; Jae-Young Um

This study was performed in order to investigate the antiobese effects of the ethanolic extract of Veratri Nigri Rhizoma et Radix (VN), a herb with limited usage, due to its toxicology. An HPLC analysis identified jervine as a constituent of VN. By an Oil Red O assay and a Real-Time RT-PCR assay, VN showed higher antiadipogenic effects than jervine. In high-fat diet- (HFD-) induced obese C57BL/6J mice, VN administration suppressed body weight gain. The levels of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT-enhancer-binding protein alpha (C/EBPα), adipocyte fatty-acid-binding protein (aP2), adiponectin, resistin, and LIPIN1 were suppressed by VN, while SIRT1 was upregulated. Furthermore, VN activated phosphorylation of the liver kinase B1- (LKB1-) AMP-activated protein kinase alpha- (AMPKα-) acetyl CoA carboxylase (ACC) axis. Further investigation of cotreatment of VN with the AMPK agonist AICAR or AMPK inhibitor Compound C showed that VN can activate the phosphorylation of AMPKα in compensation to the inhibition of Compound C. In conclusion, VN shows antiobesity effects in HFD-induced obese C57BL/6J mice. In 3T3-L1 adipocytes, VN has antiadipogenic features, which is due to activating the LKB1-AMPKα-ACC axis. These results suggest that VN has a potential benefit in preventing obesity.

Collaboration


Dive into the Dong-Hyun Youn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Su-Jin Kim

Gyeongsang National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge