Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dong-Kwon Lim is active.

Publication


Featured researches published by Dong-Kwon Lim.


Nature Materials | 2010

Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection

Dong-Kwon Lim; Ki-Seok Jeon; Hyung Min Kim; Jwa-Min Nam; Yung Doug Suh

Surface-enhanced Raman scattering (SERS)-based signal amplification and detection methods using plasmonic nanostructures have been widely investigated for imaging and sensing applications. However, SERS-based molecule detection strategies have not been practically useful because there is no straightforward method to synthesize and characterize highly sensitive SERS-active nanostructures with sufficiently high yield and efficiency, which results in an extremely low cross-section area in Raman sensing. Here, we report a high-yield synthetic method for SERS-active gold-silver core-shell nanodumbbells, where the gap between two nanoparticles and the Raman-dye position and environment can be engineered on the nanoscale. Atomic-force-microscope-correlated nano-Raman measurements of individual dumbbell structures demonstrate that Raman signals can be repeatedly detected from single-DNA-tethered nanodumbbells. These programmed nanostructure fabrication and single-DNA detection strategies open avenues for the high-yield synthesis of optically active smart nanoparticles and structurally reproducible nanostructure-based single-molecule detection and bioassays.


Nature Nanotechnology | 2011

Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap

Dong-Kwon Lim; Ki-Seok Jeon; Jae-Ho Hwang; Hyoki Kim; Sunghoon Kwon; Yung Doug Suh; Jwa-Min Nam

An ideal surface-enhanced Raman scattering (SERS) nanostructure for sensing and imaging applications should induce a high signal enhancement, generate a reproducible and uniform response, and should be easy to synthesize. Many SERS-active nanostructures have been investigated, but they suffer from poor reproducibility of the SERS-active sites, and the wide distribution of their enhancement factor values results in an unquantifiable SERS signal. Here, we show that DNA on gold nanoparticles facilitates the formation of well-defined gold nanobridged nanogap particles (Au-NNP) that generate a highly stable and reproducible SERS signal. The uniform and hollow gap (∼1 nm) between the gold core and gold shell can be precisely loaded with a quantifiable amount of Raman dyes. SERS signals generated by Au-NNPs showed a linear dependence on probe concentration (R(2) > 0.98) and were sensitive down to 10 fM concentrations. Single-particle nano-Raman mapping analysis revealed that >90% of Au-NNPs had enhancement factors greater than 1.0 × 10(8), which is sufficient for single-molecule detection, and the values were narrowly distributed between 1.0 × 10(8) and 5.0 × 10(9).


ACS Nano | 2015

Amplified Photoacoustic Performance and Enhanced Photothermal Stability of Reduced Graphene Oxide Coated Gold Nanorods for Sensitive Photoacoustic Imaging

Hyungwon Moon; Dinesh Kumar; Haemin Kim; Changbeom Sim; Jin Ho Chang; Jung-Mu Kim; Hyuncheol Kim; Dong-Kwon Lim

We report a strongly amplified photoacoustic (PA) performance of the new functional hybrid material composed of reduced graphene oxide and gold nanorods. Due to the excellent NIR light absorption properties of the reduced graphene oxide coated gold nanorods (r-GO-AuNRs) and highly efficient heat transfer process through the reduced graphene oxide layer, r-GO-AuNRs exhibit excellent photothermal stability and significantly higher photoacoustic amplitudes than those of bare-AuNRs, nonreduced graphene oxide coated AuNRs (GO-AuNRs), or silica-coated AuNR, as demonstrated in both in vitro and in vivo systems. The linear response of PA amplitude from reduced state controlled GO on AuNR indicates the critical role of GO for a strong photothermal effect of r-GO-AuNRs. Theoretical studies with finite-element-method lab-based simulation reveal that a 4 times higher magnitude of the enhanced electromagnetic field around r-GO-AuNRs can be generated compared with bare AuNRs or GO-AuNRs. Furthermore, the r-GO-AuNRs are expected to be a promising deep-tissue imaging probe because of extraordinarily high PA amplitudes in the 4-11 MHz operating frequency of an ultrasound transducer. Therefore, the r-GO-AuNRs can be a useful imaging probe for highly sensitive photoacoustic images and NIR sensitive therapeutics based on a strong photothermal effect.


ACS Nano | 2012

Tuning and Maximizing the Single-Molecule Surface-Enhanced Raman Scattering from DNA-Tethered Nanodumbbells

Jung-Hoon Lee; Jwa-Min Nam; Ki-Seok Jeon; Dong-Kwon Lim; Hyoki Kim; Sunghoon Kwon; Haemi Lee; Yung Doug Suh

We extensively study the relationships between single-molecule surface-enhanced Raman scattering (SMSERS) intensity, enhancement factor (EF) distribution over many particles, interparticle distance, particle size/shape/composition and excitation laser wavelength using the single-particle AFM-correlated Raman measurement method and theoretical calculations. Two different single-DNA-tethered Au-Ag core-shell nanodumbbell (GSND) designs with an engineerable nanogap were used in this study: the GSND-I with various interparticle nanogaps from ∼4.8 nm to <1 nm or with no gap and the GSND-II with the fixed interparticle gap size and varying particle size from a 23-30 nm pair to a 50-60 nm pair. From the GSND-I, we learned that synthesizing a <1 nm gap is a key to obtain strong SMSERS signals with a narrow EF value distribution. Importantly, in the case of the GSND-I with <1 nm interparticle gap, an EF value of as high as 5.9 × 10(13) (average value = 1.8 × 10(13)) was obtained and the EF values of analyzed particles were narrowly distributed between 1.9 × 10(12) and 5.9 × 10(13). In the case of the GSND-II probes, a combination of >50 nm Au cores and 514.5 nm laser wavelength that matches well with Ag shell generated stronger SMSERS signals with a more narrow EF distribution than <50 nm Au cores with 514.5 nm laser or the GSND-II structures with 632.8 nm laser. Our results show the usefulness and flexibility of these GSND structures in studying and obtaining SMSERS structures with a narrow distribution of high EF values and that the GSNDs with < 1 nm are promising SERS probes with highly sensitive and quantitative detection capability when optimally designed.


Chemical Communications | 2008

DNA-embedded Au/Ag core–shell nanoparticles

Dong-Kwon Lim; In-Jung Kim; Jwa-Min Nam

Here, we synthesized highly stable DNA-embedded Au/Ag core-shell nanoparticles (NPs) by a straightforward silver-staining of DNA-modified Au nanoparticles (AuNPs); unlike conventional DNA-surface modified NPs that present particle stability issues, DNA-embedded core-shell NPs offer an extraordinary stability with nanoscale controllability of silver shell thickness; these DNA-embedded core-shell NPs show excellent biorecognition properties and Ag shell-thickness-based optical properties, distinctively different from those of a mixture of AuNPs and AgNPs or Ag/Au alloy nanoparticles.


Journal of the American Chemical Society | 2014

Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap.

Jeong-Wook Oh; Dong-Kwon Lim; Gyeong-Hwan Kim; Yung Doug Suh; Jwa-Min Nam

The design, synthesis and control of plasmonic nanostructures, especially with ultrasmall plasmonically coupled nanogap (∼1 nm or smaller), are of significant interest and importance in chemistry, nanoscience, materials science, optics and nanobiotechnology. Here, we studied and established the thiolated DNA-based synthetic principles and methods in forming and controlling Au core-nanogap-Au shell structures [Au-nanobridged nanogap particles (Au-NNPs)] with various interior nanogap and Au shell structures. We found that differences in the binding affinities and modes among four different bases to Au core, DNA sequence, DNA grafting density and chemical reagents alter Au shell growth mechanism and interior nanogap-forming process on thiolated DNA-modified Au core. Importantly, poly A or poly C sequence creates a wider interior nanogap with a smoother Au shell, while poly T sequence results in a narrower interstitial interior gap with rougher Au shell, and on the basis of the electromagnetic field calculation and experimental results, we unraveled the relationships between the width of the interior plasmonic nanogap, Au shell structure, electromagnetic field and surface-enhanced Raman scattering. These principles and findings shown in this paper offer the fundamental basis for the thiolated DNA-based chemistry in forming and controlling metal nanostructures with ∼1 nm plasmonic gap and insight in the optical properties of the plasmonic NNPs, and these plasmonic nanogap structures are useful as strong and controllable optical signal-generating nanoprobes.


Nano Letters | 2016

Ultrafast and Efficient Transport of Hot Plasmonic Electrons by Graphene for Pt Free, Highly Efficient Visible-Light Responsive Photocatalyst

Dinesh Kumar; Ahreum Lee; Taegon Lee; Manho Lim; Dong-Kwon Lim

We report that reduced graphene-coated gold nanoparticles (r-GO-AuNPs) are excellent visible-light-responsive photocatalysts for the photoconversion of CO2 into formic acid (HCOOH). The wavelength-dependent quantum and chemical yields of HCOOH shows a significant contribution of plasmon-induced hot electrons for CO2 photoconversion. Furthermore, the presence and reduced state of the graphene layers are critical parameters for the efficient CO2 photoconversion because of the electron mobility of graphene. With an excellent selectivity toward HCOOH (>90%), the quantum yield of HCOOH using r-GO-AuNPs is 1.52%, superior to that of Pt-coated AuNPs (quantum yield: 1.14%). This indicates that r-GO is a viable alternative to platinum metal. The excellent colloidal stability and photocatalytic stability of r-GO-AuNPs enables CO2 photoconversion under more desirable reaction conditions. These results highlight the role of reduced graphene layers as highly efficient electron acceptors and transporters to facilitate the use of hot electrons for plasmonic photocatalysts. The femtosecond transient spectroscopic analysis also shows 8.7 times higher transport efficiency of hot plasmonic electrons in r-GO-AuNPs compared with AuNPs.


ACS Nano | 2013

Glutathione Dimerization-Based Plasmonic Nanoswitch for Biodetection of Reactive Oxygen and Nitrogen Species

Sumit Kumar; Won-Kyu Rhim; Dong-Kwon Lim; Jwa-Min Nam

Reactive oxygen and nitrogen species (ROS and RNS) are continuously produced in the cellular systems and are controlled by several antioxidant mechanisms. Here, we developed a straightforward, sensitive, and quantitative assay for the colorimetric and spectroscopic detection of various ROS and RNS such as H2O2, ·OH, (-)OCl, NO·, and O2(-) using glutathione-modified gold nanoparticles (GSH-AuNPs). A basic principle here is that the GSHs on the AuNP surface can be readily detached via the formation of glutathione disulfides upon the addition of ROS and RNS, and destabilized particles can aggregate to generate the plasmonic couplings between plasmonic AuNPs that trigger the red shift in UV-vis spectrum and solution color change. For nonradical species such as H2O2, this process can be more efficiently achieved by converting them into radical species via the Fenton reaction. Using this strategy, we were able to rapidly and quantitatively distinguish among cancerous and normal cells based on ROS and RNS production.


Journal of Materials Chemistry B | 2015

Recent advances in gold nanoparticle-based bioengineering applications

Eun Young Kim; Dinesh Kumar; Gilson Khang; Dong-Kwon Lim

Plasmonic nanoparticle based nanotechnology plays a pivotal role in the recent advances in biomedical applications. Along with biocompatibility and robust surface chemistry, the tunable optical properties of the visible and near-infrared regions of gold nanoparticles have attracted significant attention for a wide range of biomedical applications such as in vitro biosensing, in vivo imaging, drug delivery, and tissue engineering. In this review, we focus on the the recent advances in biomedical applications based on the use of plasmonic nanoparticles, which have been developed to solve the limitations of current technologies in biosensing, bioimaging, therapeutic drug delivery, and tissue engineering applications.


Small | 2011

Minimally Stable Nanoparticle‐Based Colorimetric Assay for Simple, Rapid, and Sensitive Antibody Structure and Activity Evaluation

Jung-Reem Woo; Dong-Kwon Lim; Jwa-Min Nam

A gold nanoparticle-based colorimetric antibody structure and activity evaluation method is developed without using complicated and expensive instrumentation. In this assay, a minimum number of antibodies to stabilize nanoparticles are conjugated to gold nanoparticles to prepare minimally stable nanoparticle probes, and the addition of salt rapidly induced particle aggregation and a color change of the solution from red to blue (25-min assay time). It is found that the solution color change is affected by the degree of structural denaturation of antibodies, and the conformational change of antibodies affects the modification of antibodies to nanoparticles and particle stability. Importantly, the colorimetric method can be applied to different types of antibodies (IgG, IgA, and IgM) and it shows comparable or better structural sensitivity than conventional circular dichroism spectroscopy. Moreover, immunoassay results show that these structural changes of antibodies are highly correlated with their antigen-binding activities. Rapid particle aggregation and high structural sensitivity are achieved in this assay because particles are modified with a minimum number of antibodies to stabilize particles in solution. This nanoparticle-based colorimetric method could be useful in evaluating the structural and activity changes of an array of antibodies in an easy, rapid, and sensitive manner.

Collaboration


Dive into the Dong-Kwon Lim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dae Won Moon

Daegu Gyeongbuk Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dinesh Kumar

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Hyunmin Kim

Daegu Gyeongbuk Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jae Young Kim

Daegu Gyeongbuk Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jaetae Lee

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Sang Bong Lee

Kyungpook National University Hospital

View shared research outputs
Top Co-Authors

Avatar

Sang-Woo Lee

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Seung Hee Lee

Chonbuk National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge