Dong Kyu Roh
Yonsei University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dong Kyu Roh.
Advanced Materials | 2012
Sung Hoon Ahn; Won Seok Chi; Jung Tae Park; Jong Kwan Koh; Dong Kyu Roh; Jong Hak Kim
Solid-state dye-sensitized solar cell with 7.1% efficiency at 100 mW/cm(2) is reported, one of the highest observed for N719 dye. Excellent performance was achieved via a graft copolymer-templated, organized mesoporous TiO(2) film with a large surface area using spindle-shaped, preformed TiO(2) nanoparticles and solid polymer electrolyte.
Chemical Communications | 2012
Won Seok Chi; Sungeun Yang; Dong Kyu Roh; Hyunjoo Lee; Jong Hak Kim
A low cost, low-temperature processable, highly efficient nickel sulfide counter electrode is demonstrated. Using the tailored, preformed nickel sulfide nanoparticles and electrostatic self-assembly, a novel counter electrode was fabricated that exceeded the efficiency of a conventional Pt-based cell.
Journal of Materials Chemistry | 2010
Jung Tae Park; Dong Kyu Roh; Rajkumar Patel; Eun Hye Kim; Du Yeol Ryu; Jong Hak Kim
Titania (TiO2) nanoparticles were surface-modified via atom transfer radical polymerization (ATRP) with hydrophilic poly(oxyethylene) methacrylate (POEM), which can coordinate to the TiO2 precursor, titanium(IV) isopropoxide (TTIP). Following application of a sol–gel process and calcination at 450 °C, TiO2 nanospheres with hierarchical pores were generated, as confirmed by the shifting of conduction bands in TiO2 using UV-visible spectroscopy and X-ray photoelectron spectroscopy (XPS). The particle size and morphology of TiO2 were characterized using wide angle X-ray scattering (WAXS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Brunauer–Emmett–Teller (BET) analysis revealed bimodal distribution of TiO2 pore sizes with peaks at 6 nm and 50 nm to afford better penetration of polymer electrolyte, as confirmed by electrochemical impedance spectroscopy (EIS). Dye-sensitized solar cells (DSSC) made from TiO2 nanospheres with hierarchical pores exhibited improved photovoltaic efficiency (3.3% for low molecular weight (Mw) and 2.5% for high Mw polymer electrolytes), as compared to those from neat TiO2 nanoparticles (2.4% for low Mw and 1.3% for high Mw) at 100 mW/cm2, owing to the increased surface areas and light scattering.
ACS Applied Materials & Interfaces | 2013
Dong Kyu Roh; Sang Jin Kim; Harim Jeon; Jong Hak Kim
Mesoporous MgTiO3 perovskite with a high porosity and interfacial properties were synthesized via a solvothermal reaction at 150 °C for 10 h using a graft copolymer, i.e., poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) with a well-ordered micellar morphology as a structure-directing agent. A PVC-g-POEM graft copolymer with a wormlike morphology was utilized as a soft matrix to prepare a mixed matrix membrane (MMM) with mesoporous MgTiO3 perovskite through a solution-casting method. The structure and morphology of PVC-g-POEM graft copolymer was carefully tuned by controlling polymer-solvent interactions, as characterized by transmission electron microscopy (TEM). The average pore diameter of the MgTiO3 perovskite was 10.4 nm, which is effective in facilitating gas transport via Knudsen diffusion through mesopores as well as improving interfacial contact with the organic polymer matrix. Because of a high porosity (0.56), the density of mesoporous MgTiO3 (1.75 g/cm(3)) was much lower than that of dense nonporous MgTiO3 (4 g/cm(3)) and not significantly higher than that of PVC-g-POEM (1.25 g/cm(3)), leading to a uniform distribution of MgTiO3 in MMM. The permeability of MMM with MgTiO3 was greater than those of MMM with only MgO or TiO2, indicating the simultaneous improvement of solubility and diffusivity in the former, as supported by CO2 temperature-programmed desorption (TPD) measurements. The MMM with MgTiO3 25 wt % exhibited a CO2 permeability improvement of 140% up to 138.7 Barrer (1 Barrer = 1 × 10(-10) cm(3)(STP) cm cm(-2) s(-1) cmHg(-1)) without a large loss of CO2/N2 selectivity.
Journal of Materials Chemistry | 2012
Dong Kyu Roh; Jin Ah Seo; Won Seok Chi; Jong Kwan Koh; Jong Hak Kim
Multi-functional mesoporous TiO2 (M-TiO2) beads with high porosity and good interconnectivity in the anatase phase were synthesized via a solvothermal reaction at low temperature (100 °C) using a graft copolymer, i.e., poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM), as a structure-directing agent. Field-emission scanning electron microscopy (FE-SEM), energy-filtering transmission electron microscopy (EF-TEM) and X-ray diffraction (XRD) revealed that the TiO2 beads consisted of 13 nm interconnected nanocrystallites and were monodisperse with tunable sizes of approximately 120, 250, 500 and 750 nm. The photoelectrodes fabricated with M-TiO2 beads showed a high surface area (86.5 m2 g−1) and a stronger light scattering effect, as confirmed by Brunauer–Emmett–Teller (BET) and incident photon-to-electron conversion efficiency (IPCE) measurements. The structures of M-TiO2 beads effectively offered better pore infiltration of the polymer electrolyte. Furthermore, the improved interconnectivity of M-TiO2 beads improved the electron diffusion coefficient and electron lifetime, resulting in an improvement in the light harvesting efficiency. Thus, quasi-solid-state polymer electrolyte dye-sensitized solar cells (DSSCs) with M-TiO2 beads showed a higher efficiency (4.8% at 100 mW cm−2) than those with conventional P25 (3.8%). A structure–property relation among M-TiO2 beads was investigated in terms of surface area and light scattering. Upon utilizing double layer structures and a solid polymerized ionic liquid (PIL), the efficiency was increased up to 6.7% at 100 mW cm−2, one of the highest values for all-solid-state DSSCs.
Chemical Communications | 2011
Sung Hoo Ahn; Jung Tae Park; Jong Kwan Koh; Dong Kyu Roh; Jong Hak Kim
Micron thick, well-organized mesoporous TiO(2) films with high porosity and good connectivity were synthesized by templating an amphiphilic graft copolymer for solid-state dye-sensitized solar cells.
Nanoscale | 2011
Dong Kyu Roh; Rajkumar Patel; Sung Hoon Ahn; Dong Jun Kim; Jong Hak Kim
Track-etched polycarbonate (PC) membranes were used as a soft template to synthesize mesoporous TiO(2) for use in dye-sensitized solar cells (DSSCs). The Ti precursor infiltrated into the cylindrical confined spaces of PC membranes. Upon calcination at 500 °C, TiO(2) nanowires (15TNW) were obtained from PC with a 15 nm pore diameter, whereas TiO(2) nanotubes (50TNT and 100TNT) were generated from PC with 50 and 100 nm diameter pores, respectively. TNW and TNT were used as photoelectrodes in DSSCs employing a polymer electrolyte. The ranking of the cell efficiencies of the 200 nm thick TiO(2) films was 50TNT (1.1%) > 15TNW (0.8%) ≅ 100TNT (0.7%), which was mostly attributed to different amounts of dye adsorption due to different surface areas. These TNW and TNT films were further coated with the graft copolymer-directed mesoporous TiO(2) and were used as interfacial layers between the FTO glass and the 4 μm thick nanocrystalline TiO(2) film. As a result, the order of energy conversion efficiency was 15TNW (5.0%) ≅ 50TNT (4.8%) > 100TNT (4.1%). The improved performance of 15TNW was due to a higher transmittance through the electrode and a longer electron lifetime for recombination. The DSSC performance was systematically investigated in terms of interfacial resistance and charge recombination using electrochemical impedance spectroscopy.
Macromolecular Research | 2008
Do Kyoung Lee; Jung Tae Park; Jin Kyu Choi; Dong Kyu Roh; Jung-Hyun Lee; Yong Gun Shul; Jong Hak Kim
Proton conducting crosslinked membranes were prepared using polymer blends of polystyrene-b-poly(hydroxyethyl acrylate)-b-poly(styrene sulfonic acid) (PS-b-PHEA-b-PSSA) and poly(vinyl alcohol) (PVA). PS-b-PHEA-b-PSSA triblock copolymer at 28:21:51 wt% was synthesized sequentially using atom transfer radical polymerization (ATRP). FT-IR spectroscopy showed that after thermal (120 oC, 2 h) and chemical (sulfosuccinic acid, SA) treatments of the membranes, the middle PHEA block of the triblock copolymer was crosslinked with PVA through an esterification reaction between the -OH group of the membrane and the -COOH group of SA. The ion exchange capacity (IEC) decreased from 1.56 to 0.61 meq/g with increasing amount of PVA. Therefore, the proton conductivity at room temperature decreased from 0.044 to 0.018 S/cm. However, the introduction of PVA resulted in a decrease in water uptake from 87.0 to 44.3%, providing good mechanical properties applicable to the membrane electrode assembly (MEA) of fuel cells. Transmission electron microscopy (TEM) showed that the membrane was microphase-separated with a nanometer range with good connectivity of the SO3H ionic aggregates. The power density of a single H2/O2 fuel cell system using the membrane with 50 wt% PVA was 230 mW/cm2 at 70 °C with a relative humidity of 100%. Thermogravimetric analysis (TGA) also showed a decrease in the thermal stability of the membranes with increasing PVA concentration.
Chemsuschem | 2013
Dong Kyu Roh; Won Seok Chi; Sung Hoon Ahn; Harim Jeon; Jong Hak Kim
Herein, we report a facile synthesis of high-density anatase-phase vertically aligned thornbush-like TiO2 nanowires (TBWs) on transparent conducting oxide glasses. Morphologically controllable TBW arrays of 9 μm in length are generated through a one-step hydrothermal reaction at 200 °C over 11 h using potassium titanium oxide oxalate dehydrate, diethylene glycol (DEG), and water. The TBWs consist of a large number of nanoplates or nanorods, as confirmed by SEM and TEM imaging. The morphologies of TBWs are controllable by adjusting DEG/water ratios. TBW diameters gradually decrease from 600 (TBW600) to 400 (TBW400) to 200 nm (TBW200) and morphologies change from nanoplates to nanorods with an increase in DEG content. TBWs are utilized as photoanodes for quasi-solid-state dye-sensitized solar cells (qssDSSCs) and solid-state DSSCs (ssDSSCs). The energy-conversion efficiency of qssDSSCs is in the order: TBW200 (5.2%)>TBW400 (4.5%)>TBW600 (3.4%). These results can be attributed to the different surface areas, light-scattering effects, and charge transport rates, as confirmed by dye-loading measurements, reflectance spectroscopy, and incident photon-to-electron conversion efficiency and intensity-modulated photovoltage spectroscopy/intensity-modulated photocurrent spectroscopy analyses. TBW200 is further treated with a graft-copolymer-directed organized mesoporous TiO2 to increase the surface area and interconnectivity of TBWs. As a result, the energy-conversion efficiency of the ssDSSC increases to 6.7% at 100 mW cm(-2) , which is among the highest values for N719-dye-based ssDSSCs.
Journal of Materials Chemistry | 2015
Won Seok Chi; Dong Kyu Roh; Chang Soo Lee; Jong Hak Kim
This report provides a facile process to produce shape- and morphology-controlled MIL-125(Ti), a subclass of metal organic frameworks (MOFs) using poly(ethylene glycol) diglycidyl ether (PEGDGE) as a structure directing agent. Upon deliberate calcination, MIL-125(Ti) is converted to mesoporous hierarchical TiO2 (hier-TiO2) with an anatase phase, a large surface area and a variety of nanostructures. The morphology changes from 200 nm circular plates to 1 μm bipyramids with increasing PEGDGE amount, indicating the pivotal role of PEGDGE as a shape controller. When the hier-TiO2 is deposited onto a nanocrystalline TiO2 (nc-TiO2) layer as the scattering layer, the dye-sensitized solar cell (DSSC) with a quasi-solid-state polymer electrolyte records a high conversion efficiency (7.1% at 100 mW cm−2), which is much higher than that of DSSCs with a nc-TiO2 layer only (4.6%) or with commercial scattering TiO2 (cs-TiO2) on a nc-TiO2 layer (5.0%). A solid-state DSSC using a single component solid polymer, i.e., poly((1-(4-ethenylphenyl)methyl)-3-butyl-imidazolium iodide) (PEBII), also exhibits an excellent efficiency of up to 8.0%. The improved efficiency results from the pivotal role of the hier-TiO2 in improving the surface area and light harvesting properties, as demonstrated by N2 adsorption/desorption isotherm, reflectance spectroscopy, incident photon-to-current efficiency (IPCE), and electrochemical impedance spectroscopy (EIS) analyses.