Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dong-Lei Yang is active.

Publication


Featured researches published by Dong-Lei Yang.


Molecular Plant | 2013

Roles of plant hormones and their interplay in rice immunity.

Dong-Lei Yang; Yinong Yang; Zuhua He

Plant hormones have been extensively studied for their importance in innate immunity particularly in the dicotyledonous model plant Arabidopsis thaliana. However, only in the last decade, plant hormones were demonstrated to play conserved and divergent roles in fine-tuning immune in rice (Oryza sativa L.), a monocotyledonous model crop plant. Emerging evidence showed that salicylic acid (SA) plays a role in rice basal defense but is differentially required by rice pattern recognition receptor (PRR) and resistance (R) protein-mediated immunity, and its function is likely dependent on the signaling pathway rather than the change of endogenous levels. Jasmonate (JA) plays an important role in rice basal defense against bacterial and fungal infection and may be involved in the SA-mediated resistance. Ethylene (ET) can act as a positive or negative modulator of disease resistance, depending on the pathogen type and environmental conditions. Brassinosteroid (BR) signaling and abscisic acid (ABA) either promote or defend against infection of pathogens with distinct infection/colonization strategies. Auxin and gibberellin (GA) are generally thought of as negative regulators of innate immunity in rice. Moreover, GA interacts antagonistically with JA signaling in rice development and immunity through the DELLA protein as a master regulator of the two hormone pathways. In this review, we summarize the roles of plant hormones in rice immunity and discuss their interplay/crosstalk mechanisms and the complex regulatory network of plant hormone pathways in fine-tuning rice immunity and growth.


Molecular Plant | 2008

Altered Disease Development in the eui Mutants and Eui Overexpressors Indicates that Gibberellins Negatively Regulate Rice Basal Disease Resistance

Dong-Lei Yang; Qun Li; Yiwen Deng; Yonggen Lou; Muyang Wang; Guo-Xing Zhou; Yingying Zhang; Zuhua He

Gibberellins (GAs) form a group of important plant tetracyclic diterpenoid hormones that are involved in many aspects of plant growth and development. Emerging evidence implicates that GAs also play roles in stress responses. However, the role of GAs in biotic stress is largely unknown. Here, we report that knockout or overexpression of the Elongated uppermost internode (Eui) gene encoding a GA deactivating enzyme compromises or increases, respectively, disease resistance to bacterial blight (Xanthomonas oryzae pv. oyrzae) and rice blast (Magnaporthe oryzae). Exogenous application of GA(3) and the inhibitor of GA synthesis (uniconazol) could increase disease susceptibility and resistance, respectively, to bacterial blight. Similarly, uniconazol restored disease resistance of the eui mutant and GA(3) decreased disease resistance of the Eui overexpressors to bacterial blight. Therefore, the change of resistance attributes to GA levels. In consistency with this, the GA metabolism genes OsGA20ox2 and OsGA2ox1 were down-regulated during pathogen challenge. We also found that PR1a induction was enhanced but the SA level was decreased in the Eui overexpressor, while the JA level was reduced in the eui mutant. Together, our current study indicates that GAs play a negative role in rice basal disease resistance, with EUI as a positive modulator through regulating the level of bioactive GAs.


Plant Physiology | 2014

Monoubiquitination of Histone 2B at the disease resistance gene locus regulates its expression and impacts immune responses in Arabidopsis

Baohong Zou; Dong-Lei Yang; Zhenying Shi; Hansong Dong; Jian Hua

Histone modification at the plant immune receptor gene modulates immune responses in Arabidopsis. Disease resistance (R) genes are key components in plant immunity. Here, we show that Arabidopsis (Arabidopsis thaliana) E3 ubiquitin ligase genes HISTONE MONOUBIQUITINATION1 (HUB1) and HUB2 regulate the expression of R genes SUPPRESSOR OF npr1-1, CONSTITUTIVE1 (SNC1) and RESISTANCE TO PERONOSPORA PARASITICA4. An increase of SNC1 expression induces constitutive immune responses in the bonzai1 (bon1) mutant, and the loss of HUB1 or HUB2 function reduces SNC1 up-regulation and suppresses the bon1 autoimmune phenotypes. HUB1 and HUB2 mediate histone 2B (H2B) monoubiquitination directly at the SNC1 R gene locus to regulate its expression. In addition, SNC1 and HUB1 transcripts are moderately up-regulated by pathogen infection, and H2B monoubiquitination at SNC1 is enhanced by pathogen infection. Together, this study indicates that H2B monoubiquitination at the R gene locus regulates its expression and that this histone modification at the R gene locus has an impact on immune responses in plants.


Molecular Plant Pathology | 2014

Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defence in rice

Lifan Sun; Dong-Lei Yang; Yu Kong; Ying Chen; Xiaozun Li; Longjun Zeng; Qun Li; Ertao Wang; Zuhua He

Sugar metabolism and sugar signalling are not only critical for plant growth and development, but are also important for stress responses. However, how sugar homeostasis is involved in plant defence against pathogen attack in the model crop rice remains largely unknown. In this study, we observed that the grains of gif1, a loss-of-function mutant of the cell wall invertase gene GRAIN INCOMPLETE FILLING 1 (GIF1), were hypersusceptible to postharvest fungal pathogens, with decreased levels of sugars and a thinner glume cell wall in comparison with the wild-type. Interestingly, constitutive expression of GIF1 enhanced resistance to both the rice bacterial pathogen Xanthomonas oryzae pv. oryzae and the fungal pathogen Magnaporthe oryzae. The GIF1-overexpressing (GIF1-OE) plants accumulated higher levels of glucose, fructose and sucrose compared with the wild-type plants. More importantly, higher levels of callose were deposited in GIF1-OE plants during pathogen infection. Moreover, the cell wall was much thicker in the infection sites of the GIF1-OE plants when compared with the wild-type plants. We also found that defence-related genes were constitutively activated in the GIF1-OE plants. Taken together, our study reveals that sugar homeostasis mediated by GIF1 plays an important role in constitutive and induced physical and chemical defence.


Plant Physiology | 2016

The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling through Promoting IAA-Amido Synthase Expression

Xiaozun Li; Dong-Lei Yang; Li Sun; Qun Li; Bizeng Mao; Zuhua He

The regulator protein OsNPR1 inhibits rice growth by enhancing the OsGH3.8 amido synthase of rice. Systemic acquired resistance is a long-lasting and broad-spectrum disease resistance to pathogens. Our previous study demonstrated that overexpression of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (OsNPR1), a master gene for systemic acquired resistance in rice (Oryza sativa), greatly enhanced resistance to bacterial blight caused by Xanthomonas oryzae pv oryzae. However, the growth and development of the OsNPR1 overexpression (OsNPR1-OX) plants were restrained, and the mechanism remained elusive. In this study, we dissected the OsNPR1-induced growth inhibition. We found that the OsNPR1-OX lines displayed phenotypes mimicking auxin-defective mutants, with decreases in root system, seed number and weight, internode elongation, and tiller number. Whole-genome expression analysis revealed that genes related to the auxin metabolism and signaling pathway were differentially expressed between the OsNPR1-OX and wild-type plants. Consistently, the indole-3-acetic acid (IAA) content was decreased and the auxin distribution pattern was altered in OsNPR1-OX plants. Importantly, we found that some GH3 family members, in particular OsGH3.8 coding IAA-amido synthetase, were constitutively up-regulated in OsNPR1-OX plants. Decreased OsGH3.8 expression by RNA interference could partially restore IAA level and largely rescue the restrained growth and development phenotypes but did not affect the disease resistance of OsNPR1-OX plants. Taken together, we revealed that OsNPR1 affects rice growth and development by disrupting the auxin pathway at least partially through indirectly up-regulating OsGH3.8 expression.


Plant Physiology | 2017

Calcium Pumps and Interacting BON1 Protein Modulate Calcium Signature, Stomatal Closure, and Plant Immunity

Dong-Lei Yang; Zhenying Shi; Yongmei bao; Jiapei Yan; Ziyuan Yang; Huiyun Yu; Yun Li; Mingyue Gou; Shu Wang; Baohong Zou; Dachao Xu; zhiqi ma; Jitae Kim; Jian Hua

Calcium pumps ACA10 and ACA8 and their interacting protein BON1 regulate calcium signatures and impact stomatal movement and plant immunity in Arabidopsis. Calcium signaling is essential for environmental responses including immune responses. Here, we provide evidence that the evolutionarily conserved protein BONZAI1 (BON1) functions together with autoinhibited calcium ATPase10 (ACA10) and ACA8 to regulate calcium signals in Arabidopsis. BON1 is a plasma membrane localized protein that negatively regulates the expression of immune receptor genes and positively regulates stomatal closure. We found that BON1 interacts with the autoinhibitory domains of ACA10 and ACA8, and the aca10 loss-of-function (LOF) mutants have an autoimmune phenotype similar to that of the bon1 LOF mutants. Genetic evidences indicate that BON1 positively regulates the activities of ACA10 and ACA8. Consistent with this idea, the steady level of calcium concentration is increased in both aca10 and bon1 mutants. Most strikingly, cytosolic calcium oscillation imposed by external calcium treatment was altered in aca10, aca8, and bon1 mutants in guard cells. In addition, calcium- and pathogen-induced stomatal closure was compromised in the aca10 and bon1 mutants. Taken together, this study indicates that ACA10/8 and BON1 physically interact on plasma membrane and function in the generation of cytosol calcium signatures that are critical for stomatal movement and impact plant immunity.


Journal of Genetics and Genomics | 2010

Characterization and mapping of a novel mutant sms1 (senescence and male sterility 1) in rice.

Wenyi Yan; Shenghai Ye; Qingsheng Jin; Longjun Zeng; Yu Peng; Dawei Yan; Weibing Yang; Dong-Lei Yang; Zuhua He; Yanjun Dong; Xiaoming Zhang

Plant senescence plays diverse important roles in development and environmental responses. However, the molecular basis of plant senescence is remained largely unknown. A rice spontaneous mutant with the character of early senescence and male sterility (sms) was found in the breeding line NT10-748. In order to identify the gene SMS1 and the underlying mechanism, we preliminarily analyzed physiological and biochemical phenotypes of the mutant. The mutant contained lower chlorophyll content compared with the wild type control and was severe male sterile with lower pollen viability. Genetic analysis showed that the mutant was controlled by a single recessive gene. By the map-based cloning approach, we fine-mapped SMS1 to a 67 kb region between the markers Z3-4 and Z1-1 on chromo-some 8 using 1,074 F(2) recessive plants derived from the cross between the mutant sms1 (japonica) x Zhenshan 97 (indica), where no known gene involved in senescence or male sterility has been identified. Therefore the SMS1 gene will be a novel gene that regulates the two developmental processes. The further cloning and functional analysis of the SMS1 gene is under way.


Cell Host & Microbe | 2016

An E3 Ubiquitin Ligase-BAG Protein Module Controls Plant Innate Immunity and Broad-Spectrum Disease Resistance

Quanyuan You; Keran Zhai; Dong-Lei Yang; Weibing Yang; Jingni Wu; J. Liu; Wenbo Pan; Jianjun Wang; Xudong Zhu; Yikun Jian; Jiyun Liu; Yingying Zhang; Yiwen Deng; Qun Li; Yonggen Lou; Qi Xie; Zuhua He

Programmed cell death (PCD) and immunity in plants are tightly controlled to promote antimicrobial defense while preventing autoimmunity. However, the mechanisms contributing to this immune homeostasis are poorly understood. Here, we isolated a rice mutant ebr1 (enhanced blight and blast resistance 1) that shows enhanced broad-spectrum bacterial and fungal disease resistance, but displays spontaneous PCD, autoimmunity, and stunted growth. EBR1 encodes an E3 ubiquitin ligase that interacts with OsBAG4, which belongs to the BAG (Bcl-2-associated athanogene) family that functions in cell death, growth arrest, and immune responses in mammals. EBR1 directly targets OsBAG4 for ubiquitination-mediated degradation. Elevated levels of OsBAG4 in rice are necessary and sufficient to trigger PCD and enhanced disease resistance to pathogenic infection, most likely by activating pathogen-associated molecular patterns-triggered immunity (PTI). Together, our study suggests that an E3-BAG module orchestrates innate immune homeostasis and coordinates the trade-off between defense and growth in plants.


Phytopathology | 2018

Deep Sequencing Uncovers Rice Long siRNAs and Its Involvement in Immunity Against Rhizoctonia solani

Dongdong Niu; Xin Zhang; Xiaoou Song; Zhihui Wang; Yanqiang Li; Lulu Qiao; Zhaoyun Wang; J. Liu; Yiwen Deng; Zuhua He; Dong-Lei Yang; Renyi Liu; Yanli Wang; Hongwei Zhao

Small RNA (sRNA) is a class of noncoding RNA that can silence the expression of target genes. In rice, the majority of characterized sRNAs are within the range of 21 to 24 nucleotides (nt) long, whose biogenesis and function are associated with a specific sets of components, such as Dicer-like (OsDCLs) and Argonaute proteins (OsAGOs). Rice sRNAs longer than 24 nt are occasionally reported, with biogenesis and functional mechanism uninvestigated, especially in a context of defense responses against pathogen infection. By using deep sequencing, we identified a group of rice long small interfering RNAs (lsiRNAs) that are within the range of 25 to 40 nt in length. Our results show that some rice lsiRNAs are differentially expressed upon infection of Rhizoctonia solani, the causal agent of the rice sheath blight disease. Bioinformatic analysis and experimental validation indicate that some rice lsiRNAs can target defense-related genes. We further demonstrate that rice lsiRNAs are neither derived from RNA degradation nor originated as secondary small interfering RNAs (siRNAs). Moreover, lsiRNAs require OsDCL4 for biogenesis and OsAGO18 for function. Therefore, our study indicates that rice lsiRNAs are a unique class of endogenous sRNAs produced in rice, which may participate in response against pathogens.


Plant and Cell Physiology | 2017

The Arabidopsis Chromatin-Remodeling Factor CHR5 Regulates Plant Immune Responses and Nucleosome Occupancy

Baohong Zou; Qi Sun; Wenli Zhang; Yuan Ding; Dong-Lei Yang; Zhenying Shi; Jian Hua

ATP-dependent chromatin-remodeling factors use the energy of ATP hydrolysis to alter the structure of chromatin and are important regulators of eukaryotic gene expression. One such factor encoded by CHR5 (Chromatin-Remodeling Factor 5) in Arabidopsis (Arabidopsis thaliana) was previously found to be involved in regulation of growth and development. Here we show that CHR5 is required for the up-regulation of the intracellular immune receptor gene SNC1 (SUPPRESSOR OF npr1-1, CONSTITUTIVE1) and consequently the autoimmunity induced by SNC1 up-regulation. CHR5 functions antagonistically with another chromatin-remodeling gene DDM1 (DECREASED DNA METHYLATION 1) and independently with a histone mono-ubiquitinase HUB1 (HISTONE MONOUBIQUITINATION 1) in SNC1 regulation. In addition, CHR5 is a positive regulator of SNC1-independent plant immunity against the bacterial pathogen Pseudomonas syringae. Furthermore, the chr5 mutant has increased nucleosome occupancy in the promoter region relative to the gene body region at the whole-genome level, suggesting a global role for CHR5 in remodeling nucleosome occupancy. Our study thus establishes CHR5 as a positive regulator of plant immune responses including the expression of SNC1 and reveals a role for CHR5 in nucleosome occupancy which probably impacts gene expression genome wide.

Collaboration


Dive into the Dong-Lei Yang's collaboration.

Top Co-Authors

Avatar

Zuhua He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qun Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Baohong Zou

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Muyang Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yiwen Deng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianjun Wang

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Liu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge