Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dong-Ling Xu is active.

Publication


Featured researches published by Dong-Ling Xu.


Astrophysical Journal Supplement Series | 2009

Low-resolution Spectroscopy of Gamma-ray Burst Optical Afterglows : Biases in the Swift Sample and Characterization of the Absorbers

J. P. U. Fynbo; P. Jakobsson; Jason X. Prochaska; Daniele Malesani; Cedric Ledoux; A. de Ugarte Postigo; M. Nardini; Paul M. Vreeswijk; K. Wiersema; J. Hjorth; Jesper Sollerman; H.-. W. Chen; C. C. Thöne; G. Björnsson; J. S. Bloom; A. J. Castro-Tirado; L. Christensen; A. De Cia; Andrew S. Fruchter; J. Gorosabel; John F. Graham; Andreas O. Jaunsen; B. L. Jensen; D. A. Kann; C. Kouveliotou; Andrew J. Levan; Justyn R. Maund; N. Masetti; B. Milvang-Jensen; Eliana Palazzi

We present a sample of 77 optical afterglows (OAs) of Swift detected gamma-ray bursts (GRBs) for which spectroscopic follow-up observations have been secured. Our first objective is to measure the redshifts of the bursts. For the majority (90%) of the afterglows, the redshifts have been determined from the spectra. We provide line lists and equivalent widths (EWs) for all detected lines redward of Lyα covered by the spectra. In addition to the GRB absorption systems, these lists include line strengths for a total of 33 intervening absorption systems. We discuss to what extent the current sample of Swift bursts with OA spectroscopy is a biased subsample of all Swift detected GRBs. For that purpose we define an X-ray-selected statistical sample of Swift bursts with optimal conditions for ground-based follow-up from the period 2005 March to 2008 September; 146 bursts fulfill our sample criteria. We derive the redshift distribution for the statistical (X-ray selected) sample and conclude that less than 18% of Swift bursts can be at z > 7. We compare the high-energy properties (e.g., γ-ray (15-350 keV) fluence and duration, X-ray flux, and excess absorption) for three subsamples of bursts in the statistical sample: (1) bursts with redshifts measured from OA spectroscopy; (2) bursts with detected optical and/or near-IR afterglow, but no afterglow-based redshift; and (3) bursts with no detection of the OA. The bursts in group (1) have slightly higher γ-ray fluences and higher X-ray fluxes and significantly less excess X-ray absorption than bursts in the other two groups. In addition, the fractions of dark bursts, defined as bursts with an optical to X-ray slope βOX 39% in group (3). For the full sample, the dark burst fraction is constrained to be in the range 25%-42%. From this we conclude that the sample of GRBs with OA spectroscopy is not representative for all Swift bursts, most likely due to a bias against the most dusty sight lines. This should be taken into account when determining, e.g., the redshift or metallicity distribution of GRBs and when using GRBs as a probe of star formation. Finally, we characterize GRB absorption systems as a class and compare them to QSO absorption systems, in particular the damped Lyα absorbers (DLAs). On average GRB absorbers are characterized by significantly stronger EWs for H I as well as for both low and high ionization metal lines than what is seen in intervening QSO absorbers. However, the distribution of line strengths is very broad and several GRB absorbers have lines with EWs well within the range spanned by QSO-DLAs. Based on the 33 z > 2 bursts in the sample, we place a 95% confidence upper limit of 7.5% on the mean escape fraction of ionizing photons from star-forming galaxies. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programs 275.D-5022 (PI: Chincarini), 075.D-0270 (PI: Fynbo), 077.D-0661 (PI: Vreeswijk), 077.D-0805 (PI: Tagliaferri), 177.A-0591 (PI: Hjorth), 078.D-0416 (PI: Vreeswijk), 079.D-0429 (PI: Vreeswijk), 080.D-0526 (PI: Vreeswijk), 081.A-0135 (PI: Greiner), 281.D-5002 (PI: Della Valle), and 081.A-0856 (PI: Vreeswijk). Also based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Some of the data obtained herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck foundation.


The Astrophysical Journal | 2010

THE AFTERGLOWS OF SWIFT-ERA GAMMA-RAY BURSTS. I. COMPARING PRE-SWIFT AND SWIFT-ERA LONG/SOFT (TYPE II) GRB OPTICAL AFTERGLOWS

D. A. Kann; Sylvio Klose; Bin-Bin Zhang; Daniele Malesani; Ehud Nakar; Alexei S. Pozanenko; A. C. Wilson; N. Butler; P. Jakobsson; S. Schulze; M. Andreev; L. A. Antonelli; I. Bikmaev; Vadim Biryukov; M. Böttcher; R. A. Burenin; J. M. Castro Cerón; A. J. Castro-Tirado; Guido Chincarini; Bethany Elisa Cobb; S. Covino; P. D'Avanzo; Valerio D'Elia; M. Della Valle; A. de Ugarte Postigo; Yu. S. Efimov; P. Ferrero; Dino Fugazza; J. P. U. Fynbo; M. Gålfalk

We have gathered optical photometry data from the literature on a large sample of Swift-era gamma-ray burst (GRB) afterglows including GRBs up to 2009 September, for a total of 76 GRBs, and present an additional three pre-Swift GRBs not included in an earlier sample. Furthermore, we publish 840 additional new photometry data points on a total of 42 GRB afterglows, including large data sets for GRBs 050319, 050408, 050802, 050820A, 050922C, 060418, 080413A, and 080810. We analyzed the light curves of all GRBs in the sample and derived spectral energy distributions for the sample with the best data quality, allowing us to estimate the host-galaxy extinction. We transformed the afterglow light curves into an extinction-corrected z = 1 system and compared their luminosities with a sample of pre-Swift afterglows. The results of a former study, which showed that GRB afterglows clustered and exhibited a bimodal distribution in luminosity space, are weakened by the larger sample. We found that the luminosity distribution of the two afterglow samples (Swift-era and pre-Swift) is very similar, and that a subsample for which we were not able to estimate the extinction, which is fainter than the main sample, can be explained by assuming a moderate amount of line-of-sight host extinction. We derived bolometric isotropic energies for all GRBs in our sample, and found only a tentative correlation between the prompt energy release and the optical afterglow luminosity at 1 day after the GRB in the z = 1 system. A comparative study of the optical luminosities of GRB afterglows with echelle spectra (which show a high number of foreground absorbing systems) and those without, reveals no indication that the former are statistically significantly more luminous. Furthermore, we propose the existence of an upper ceiling on afterglow luminosities and study the luminosity distribution at early times, which was not accessible before the advent of the Swift satellite. Most GRBs feature afterglows that are dominated by the forward shock from early times on. Finally, we present the first indications of a class of long GRBs, which form a bridge between the typical high-luminosity, high-redshift events and nearby low-luminosity events (which are also associated with spectroscopic supernovae) in terms of energetics and observed redshift distribution, indicating a continuous distribution overall.


Astronomy and Astrophysics | 2006

Supernova 2006aj and the associated X-Ray Flash 060218

Jesper Sollerman; Andreas O. Jaunsen; J. P. U. Fynbo; J. Hjorth; P. Jakobsson; Maximilian D. Stritzinger; C. Feron; Peter Laursen; J.-E. Ovaldsen; J. H. Selj; C. C. Thöne; Dong-Ling Xu; Tamara M. Davis; J. Gorosabel; D. Watson; R. Duro; Ilya V. Ilyin; B. L. Jensen; N. Lysfjord; Thomas Marquart; T. B. Nielsen; Jyri Naranen; H. E. Schwarz; S. Walch; M. Wold; Göran Östlin

Aims. We have studied the afterglow of the gamma-ray burst (GRB) of February 18, 2006. This is a nearby long GRB, with a very low peak energy, and is therefore classified as an X-ray Flash (XRF). XRF 060218 is clearly associated with a supernova – dubbed SN 2006aj. Methods. We present early spectra for SN 2006aj as well as optical lightcurves reaching out to 50 days past explosion. Results. Our optical lightcurves define the rise times, the lightcurve shapes and the absolute magnitudes in the U, V and R bands, and we compare these data with data for other relevant supernovae. SN 2006aj evolved quite fast, somewhat similarly to SN 2002ap, but not as fast as SN 1994I. Our spectra show the evolution of the supernova over the peak, when the U-band portion of the spectrum rapidly fades due to extensive line blanketing. We compare to similar spectra of very energetic type Ic supernovae. Our first spectra are earlier than spectra for any other GRB-SN. The spectrum taken 12 days after burst in the rest frame is similar to somewhat later spectra of both SN 1998bw and SN 2003dh, implying a rapid early evolution. This is consistent with the fast lightcurve. From the narrow emission lines from the host galaxy we derive a redshift of z = 0.0331 ± 0.0007. This makes XRF 060218 the second closest gamma-ray burst detected. The flux of these emission lines indicate a high-excitation state, and a modest metallicity and star formation rate of the host galaxy.


Astronomy and Astrophysics | 2015

GRB hosts through cosmic time. VLT/X-Shooter emission-line spectroscopy of 96 γ-ray-burst-selected galaxies at 0.1 <z < 3.6

T. Krühler; Daniele Malesani; J. P. U. Fynbo; O. E. Hartoog; J. Hjorth; P. Jakobsson; Daniel A. Perley; A. Rossi; Patricia Schady; S. Schulze; Nial R. Tanvir; S. D. Vergani; K. Wiersema; P. M. J. Afonso; J. Bolmer; Z. Cano; S. Covino; V. D’Elia; A. de Ugarte Postigo; Robert Filgas; M. Friis; John F. Graham; J. Greiner; P. Goldoni; Andreja Gomboc; F. Hammer; J. Japelj; D. A. Kann; L. Kaper; Sylvio Klose

We present data and initial results from VLT/X-Shooter emission-line spectroscopy of 96 galaxies selected by long γ-ray bursts (GRBs) at 0.1 2 by ~0.4 dex. These properties of GRB hosts and their evolution with redshift can be understood in a cosmological context of star-forming galaxies and a picture in which the hosts’ properties at low redshift are influenced by the tendency of GRBs to avoid the most metal-rich environments.


The Astrophysical Journal | 2013

Discovery of the Broad-lined Type Ic SN 2013cq Associated with the Very Energetic GRB 130427A

Dong-Ling Xu; A. de Ugarte Postigo; G. Leloudas; T. Krühler; Z. Cano; J. Hjorth; Daniele Malesani; J. P. U. Fynbo; C. C. Thöne; R. Sánchez-Ramírez; S. Schulze; P. Jakobsson; L. Kaper; Jesper Sollerman; Darach Watson; A. Cabrera-Lavers; Chen Cao; S. Covino; H. Flores; S. Geier; Javier Gorosabel; Shao Ming Hu; B. Milvang-Jensen; M. Sparre; L. P. Xin; Tianmeng Zhang; W. Zheng; Yuan-Chuan Zou

Long-duration gamma-ray bursts (GRBs) at z < 1 are found in most cases to be accompanied by bright, broad-lined Type Ic supernovae (SNe Ic-BL). The highest-energy GRBs are mostly located at higher redshifts, where the associated SNe are hard to detect observationally. Here, we present early and late observations of the optical counterpart of the very energetic GRB 130427A. Despite its moderate redshift, z = 0.3399 ± 0.0002, GRB 130427A is at the high end of the GRB energy distribution, with an isotropic-equivalent energy release of E iso ~ 9.6 × 1053 erg, more than an order of magnitude more energetic than other GRBs with spectroscopically confirmed SNe. In our dense photometric monitoring, we detect excess flux in the host-subtracted r-band light curve, consistent with that expected from an emerging SN, ~0.2 mag fainter than the prototypical SN 1998bw. A spectrum obtained around the time of the SN peak (16.7 days after the GRB) reveals broad undulations typical of SNe Ic-BL, confirming the presence of an SN, designated SN 2013cq. The spectral shape and early peak time are similar to those of the high expansion velocity SN 2010bh associated with GRB 100316D. Our findings demonstrate that high-energy, long-duration GRBs, commonly detected at high redshift, can also be associated with SNe Ic-BL, pointing to a common progenitor mechanism.


Astronomy and Astrophysics | 2014

GRB 120422A/SN 2012bz: Bridging the gap between low- and high-luminosity gamma-ray bursts*

S. Schulze; Daniele Malesani; Antonino Cucchiara; Nial R. Tanvir; T. Krühler; A. de Ugarte Postigo; G. Leloudas; J. D. Lyman; D. F. Bersier; K. Wiersema; Daniel A. Perley; Patricia Schady; Javier Gorosabel; J. P. Anderson; A. J. Castro-Tirado; S. B. Cenko; A. De Cia; L. E. Ellerbroek; J. P. U. Fynbo; J. Greiner; J. Hjorth; D. A. Kann; L. Kaper; Sylvio Klose; Andrew J. Levan; S. Martín; P. T. O’Brien; Kim L. Page; Giuliano Pignata; S. Rapaport

Context. At low redshift, a handful of gamma-ray bursts (GRBs) have been discovered with luminosities that are substantially lower (Liso 10 49.5 erg s −1 ). It has been suggested that the properties of several low-luminosity (low-L) GRBs are due to shock break-out, as opposed to the emission from ultrarelativistic jets. This has led to much debate about how the populations are connected. Aims. The burst at redshift z = 0.283 from 2012 April 22 is one of the very few examples of intermediate-L GRBs with a γ-ray luminosity of Liso ∼ 10 49.6−49.9 erg s −1 that have been detected up to now. With the robust detection of its accompanying supernova SN 2012bz, it has the potential to answer important questions on the origin of low- and high-L GRBs and the GRB-SN connection. Methods. We carried out a spectroscopy campaign using medium- and low-resolution spectrographs with 6–10-m class telescopes, which covered a time span of 37.3 days, and a multi-wavelength imaging campaign, which ranged from radio to X-ray energies over a duration of ∼270 days. Furthermore, we used a tuneable filter that is centred at Hα to map star-formation in the host and the surrounding galaxies. We used these data to extract and model the properties of different radiation components and fitted the spectral energy distribution to extract the properties of the host galaxy. Results. Modelling the light curve and spectral energy distribution from the radio to the X-rays revealed that the blast wave expanded with an initial Lorentz factor of Γ0 ∼ 50, which is a low value in comparison to high-L GRBs, and that the afterglow had an exceptionally low peak luminosity density of <2 × 10 30 erg s −1 Hz −1 in the sub-mm. Because of the weak afterglow component, we were able to recover the signature of a shock break-out in an event that was not a genuine low-L GRB for the first time. At 1.4 hr after the burst, the stellar envelope had a blackbody temperature of kBT ∼ 16 eV and a radius of ∼7 × 10 13 cm (both in the observer frame). The accompanying SN 2012bz reached a peak luminosity of MV = −19.7 mag, which is 0.3 mag more luminous than SN 1998bw. The synthesised nickel mass of 0.58 M� , ejecta mass of 5.87 M� ,a nd kinetic energy of 4.10 × 10 52 erg were among the highest for GRB-SNe, which makes it the most luminous spectroscopically confirmed SN to date. Nebular emission lines at the GRB location were visible, which extend from the galaxy nucleus to the explosion site. The host and the explosion site had close-to-solar metallicity. The burst occurred in an isolated star-forming region with an SFR that is 1/10 of that in the galaxy’s nucleus. Conclusions. While the prompt γ-ray emission points to a high-L GRB, the weak afterglow and the low Γ0 were very atypical for such a burst. Moreover, the detection of the shock break-out signature is a new quality for high-L GRBs. So far, shock break-outs were exclusively detected for low-L GRBs, while GRB 120422A had an intermediate Liso of ∼10 49.6−49.9 erg s −1 . Therefore, we conclude that GRB 120422A was a transition object between low- and high-L GRBs, which supports the failed-jet model that connects low-L GRBs that are driven by shock break-outs and high-L GRBs that are powered by ultra-relativistic jets.


The Astrophysical Journal | 2007

Detection of GRB 060927 at z = 5.47: Implications for the Use of Gamma-Ray Bursts as Probes of the End of the Dark Ages

A. E. Ruiz-Velasco; Heather Swan; E. Troja; Daniele Malesani; J. P. U. Fynbo; Rhaana L. C. Starling; Dong-Ling Xu; F. Aharonian; C. Akerlof; Michael I. Andersen; Michael C. B. Ashley; S. D. Barthelmy; D. F. Bersier; M. Castro Cerón; A. J. Castro-Tirado; Neil Gehrels; Ersin Gogus; J. Gorosabel; C. Guidorzi; Tolga Guver; J. Hjorth; D. Horns; Kuiyun Huang; P. Jakobsson; B. L. Jensen; Umit Kiziloglu; C. Kouveliotou; Hans A. Krimm; Cedric Ledoux; Andrew J. Levan

We report on follow-up observations of the gamma-ray burst GRB 060927 using the robotic ROTSE-IIIa telescope and a suite of larger aperture ground-based telescopes. An optical afterglow was detected 20 s after the burst, the earliest rest-frame detection of optical emission from any GRB. Spectroscopy performed with the VLT about 13 hr after the trigger shows a continuum break at lambda~8070 A, produced by neutral hydrogen absorption at z~5.6. We also detect an absorption line at 8158 A, which we interpret as Si II lambda1260 at z=5.467. Hence, GRB 060927 is the second most distant GRB with a spectroscopically measured redshift. The shape of the red wing of the spectral break can be fitted by a damped Lyalpha profile with a column density with log(NH/cm-2)=22.50+/-0.15. We discuss the implications of this work for the use of GRBs as probes of the end of the dark ages and draw three main conclusions: (1) GRB afterglows originating from z>~6 should be relatively easy to detect from the ground, but rapid near-infrared monitoring is necessary to ensure that they are found; (2) the presence of large H I column densities in some GRB host galaxies at z>5 makes the use of GRBs to probe the reionization epoch via spectroscopy of the red damping wing challenging; and (3) GRBs appear crucial to locate typical star-forming galaxies at z>5, and therefore the type of galaxies responsible for the reionization of the universe. Partly based on observations carried out with the ESO telescopes under programs 077.D-0661, 077.A-0667, 078.D-0416, and the large program 177.A-f0591.


Astronomy and Astrophysics | 2013

Molecular hydrogen in the damped Lyman α system towards GRB 120815A at z = 2.36

T. Krühler; C. Ledoux; J. P. U. Fynbo; Paul M. Vreeswijk; S. Schmidl; Daniele Malesani; Lise Christensen; A. De Cia; J. Hjorth; P. Jakobsson; D. A. Kann; L. Kaper; S. D. Vergani; P. M. J. Afonso; S. Covino; A. de Ugarte Postigo; V. D’Elia; Robert Filgas; Paolo Goldoni; J. Greiner; O. E. Hartoog; B. Milvang-Jensen; M. Nardini; S. Piranomonte; A. Rossi; R. Sánchez-Ramírez; Patricia Schady; S. Schulze; V. Sudilovsky; Nial R. Tanvir

We present the discovery of molecular hydrogen (H2), including the presence of vibrationally-excited H2* in the optical spectrum of the afterglow of GRB 120815A at z = 2.36 obtained with X-shooter at the VLT. Simultaneous photometric broad-band data from GROND and X-ray observations by Swift/XRT place further constraints on the amount and nature of dust along the sightline. The galactic environment of GRB 120815A is characterized by a strong DLA with log(N(H i)/cm-2) = 21.95 ± 0.10, prominent H2 absorption in the Lyman-Werner bands (log (N(H2)/cm-2) = 20.54 ± 0.13) and thus a molecular gas fraction log f(H2) = -1.14 ± 0.15. The distance d between the absorbing neutral gas and GRB 120815A is constrained via photo-excitation modeling of fine-structure and meta-stable transitions of Fe ii and Ni ii to d = 0.5 ± 0.1 kpc. The DLA metallicity ([Zn/H] = -1.15 ± 0.12), visual extinction (AV ≲ 0.15 mag) and dust depletion ([Zn/Fe] = 1.01 ± 0.10) are intermediate between the values of well-studied, H2-deficient GRB-DLAs observed at high spectral resolution, and the approximately solar metallicity, highly-obscured and H2-rich GRB 080607 sightline. With respect to N(H i), metallicity, as well as dust-extinction and depletion, GRB 120815A is fairly representative of the average properties of GRB-DLAs. This demonstrates that molecular hydrogen is present in at least a fraction of the more typical GRB-DLAs, and H2 and H2* are probably more wide-spread among GRB-selected systems than the few examples of previous detections would suggest. Because H2* transitions are located redwards of the Lyman α absorption, H2* opens a second route for positive searches for molecular absorption also in GRB afterglows at lower redshifts and observed at lower spectral resolution. Further detections of molecular gas in GRB-DLAs would allow statistical studies, and, coupled with host follow-up and sub-mm spectroscopy, provide unprecedented insights into the process and conditions of star-formation at high redshift.


Monthly Notices of the Royal Astronomical Society | 2014

The host galaxies of Type Ia supernovae discovered by the Palomar Transient Factory

Y.-C. Pan; M. Sullivan; K. Maguire; Isobel M. Hook; Peter E. Nugent; D. A. Howell; Iair Arcavi; J. Botyanszki; S. B. Cenko; J. DeRose; H. K. Fakhouri; Avishay Gal-Yam; E. Y. Hsiao; S. R. Kulkarni; R. R. Laher; C. Lidman; J. Nordin; Emma S. Walker; Dong-Ling Xu

We present spectroscopic observations of the host galaxies of 82 low-redshift Type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory. We determine star formation rates, gas-phase/stellar metallicities, and stellar masses and ages of these objects. As expected, strong correlations between the SN Ia light-curve width (stretch) and the host age/mass/metallicity are found: fainter, faster declining events tend to be hosted by older/massive/metal-rich galaxies. There is some evidence that redder SNe Ia explode in higher metallicity galaxies, but we found no relation between the SN colour and host galaxy extinction based on the Balmer decrement, suggesting that the colour variation of these SNe does not primarily arise from this source. SNe Ia in higher mass/metallicity galaxies also appear brighter after stretch/colour corrections than their counterparts in lower mass hosts, and the stronger correlation is with gas-phase metallicity suggesting this may be the more important variable. We also compared the host stellar mass distribution to that in galaxy-targeted SN surveys and the high-redshift untargeted Supernova Legacy Survey (SNLS). SNLS has many more low-mass galaxies, while the targeted searches have fewer. This can be explained by an evolution in the galaxy stellar mass function, coupled with an SN delay-time distribution proportional to t^−1. Finally, we found no significant difference in the mass–metallicity relation of our SN Ia hosts compared to field galaxies, suggesting any metallicity effect on the SN Ia rate is small.


The Astrophysical Journal | 2014

A MULTI-WAVELENGTH INVESTIGATION OF THE RADIO-LOUD SUPERNOVA PTF11qcj AND ITS CIRCUMSTELLAR ENVIRONMENT

A. Corsi; Eran O. Ofek; Avishay Gal-Yam; Dale A. Frail; S. R. Kulkarni; Derek B. Fox; Mansi M. Kasliwal; Assaf Horesh; John M. Carpenter; K. Maguire; I. Arcavi; S. B. Cenko; Y. Cao; K. Mooley; Y.-C. Pan; Branimir Sesar; Assaf Sternberg; Dong-Ling Xu; D. F. Bersier; P. A. James; J. S. Bloom; Peter E. Nugent

We present the discovery, classification, and extensive panchromatic (from radio to X-ray) follow-up observations of PTF11qcj, a supernova (SN) discovered by the Palomar Transient Factory (PTF). Our observations with the Karl G. Jansky Very Large Array show that this event is radio-loud: PTF11qcj reached a radio peak luminosity comparable to that of the famous gamma-ray-burst-associated SN 1998bw (L_(5 GHz) ≈ 10^(29) erg s^(−1) Hz^(−1)). PTF11qcj is also detected in X-rays with the Chandra Observatory, and in the infrared band with Spitzer. Our multi-wavelength analysis probes the SN interaction with circumstellar material. The radio observations suggest a progenitor mass-loss rate of ~10^(−4) M_☉ yr^(−1) × (v_w/1000 km s^(−1)), and a velocity of ≈0.3–0.5 c for the fastest moving ejecta (at ≈10 days after explosion). However, these estimates are derived assuming the simplest model of SN ejecta interacting with a smooth circumstellar wind, and do not account for possible inhomogeneities in the medium and asphericity of the explosion. The radio data show deviations from such a simple model, as well as a late-time re-brightening. The X-ray flux from PTF11qcj is compatible with the high-frequency extrapolation of the radio synchrotron emission (within the large uncertainties). A light echo from pre-existing dust is in agreement with our infrared data. Our pre-explosion data from the PTF suggest that a precursor eruption of absolute magnitude M_r ≈ −13 mag may have occurred ≈2.5 yr prior to the SN explosion. Overall, PTF11qcj fits the expectations from the explosion of a Wolf–Rayet star. Precursor eruptions may be a feature characterizing the final pre-explosion evolution of such stars.

Collaboration


Dive into the Dong-Ling Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Hjorth

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Leloudas

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

J. P. U. Fynbo

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

A. de Ugarte Postigo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. J. Castro-Tirado

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge