Dong-Seok Shin
Catholic University of Korea
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dong-Seok Shin.
Radiation Oncology | 2018
Dong-Su Kim; Siyong Kim; Seong-Hee Kang; Tae-Ho Kim; So-Hyun Park; Kyeong-Hyeon Kim; Min-Seok Cho; Dong-Seok Shin; Yu-Yun Noh; Jin-Beom Chung; Tae Suk Suh
BackgroundIn intensity modulated radiation therapy (IMRT) quality assurance (QA), evaluation of QA result using a pass/non-pass strategy under an acceptance criterion often suffers from lack of information on how good the plan is in absolute manner. In this study, we suggested adding an index system, previously developed for dose painting technique, to current IMRT QA process for better understanding of QA result.MethodsThe index system consists of three indices, index of achievement (IOA), index of hotness (IOH) and index of coldness (IOC). As indicated by its name, IOA does measure the level of agreement. IOH and IOC, on the other hand, measure the magnitude of overdose and underdose, respectively. A systematic analysis was performed with three 1-dimensional hypothetical dose distributions to investigate the characteristics of the index system. The feasibility of the system was also assessed with clinical volumetric modulated arc therapy (VMAT) QA cases from 8 head & neck and 5 prostate patients. In both simulation studies, certain amount of errors was intentionally induced to each dose distribution. Furthermore, we applied the proposed system to compare calculated with actual measured data for a total of 60 patients (30 head & neck and 30 prostate cases). QA analysis was made using both the index system and gamma method, and results were compared.ResultsWhile the gamma evaluation showed limited sensitivity in evaluating QA result depending on the level of tolerance criteria used, the proposed indices tended to better distinguish plans in terms of the amount of errors. Hotness and coldness of prescribed dose in the plan could be evaluated quantitatively by the indices.ConclusionsThe proposed index system provides information with which IMRT QA result would be better evaluated, especially when gamma pass rates are identical or similar among multiple plans. In addition, the independency of the index system on acceptance criteria would help making clear communications among readers of published articles and researchers in multi-institutional studies.
Physics in Medicine and Biology | 2018
Tae-Ho Kim; Siyong Kim; Dong-Su Kim; Seong-Hee Kang; Min-Seok Cho; Kyeong-Hyeon Kim; Dong-Seok Shin; Tae-Suk Suh
In this study, we developed and evaluated a system that could monitor abdominal compression force (ACF) in real time and provide a surrogating signal, even under abdominal compression. The system could also provide visual-biofeedback (VBF). The real-time ACF monitoring system developed consists of an abdominal compression device, an ACF monitoring unit and a control system including an in-house ACF management program. We anticipated that ACF variation information caused by respiratory abdominal motion could be used as a respiratory surrogate signal. Four volunteers participated in this test to obtain correlation coefficients between ACF variation and tidal volumes. A simulation study with another group of six volunteers was performed to evaluate the feasibility of the proposed system. In the simulation, we investigated the reproducibility of the compression setup and proposed a further enhanced shallow breathing (ESB) technique using VBF by intentionally reducing the amplitude of the breathing range under abdominal compression. The correlation coefficient between the ACF variation caused by the respiratory abdominal motion and the tidal volume signal for each volunteer was evaluated and R 2 values ranged from 0.79 to 0.84. The ACF variation was similar to a respiratory pattern and slight variations of ACF ranges were observed among sessions. About 73-77% average ACF control rate (i.e. compliance) over five trials was observed in all volunteer subjects except one (64%) when there was no VBF. The targeted ACF range was intentionally reduced to achieve ESB for VBF simulation. With VBF, in spite of the reduced target range, overall ACF control rate improved by about 20% in all volunteers except one (4%), demonstrating the effectiveness of VBF. The developed monitoring system could help reduce the inter-fraction ACF set up error and the intra fraction ACF variation. With the capability of providing a real time surrogating signal and VBF under compression, it could improve the quality of respiratory tumor motion management in abdominal compression radiation therapy.
Oncotarget | 2018
Seong-Hee Kang; Siyong Kim; Dong-Su Kim; Tae-Ho Kim; So Hyun Park; Dong-Seok Shin; Kyeong-Hyeon Kim; Min-Seok Cho; Yeon-Sil Kim; Tae Suk Suh
Background To propose an effective and simple cost value function to determine an optimal respiratory phase for lung treatment using either respiratory gating or breath-hold technique. Results The optimized phase was obtained at a phase close to end inhalation in 11 out of 15 patients. For the rest of patients, the optimized phase was obtained at a phase close to end exhalation indicating that optimal phase can be patient specific. The mean doses of the Organs-at-risk (OARs) significantly decreased at the optimized phase without compromising the planning target volume (PTV) coverage (about 8% for all 3 OARs considered). Materials and Methods Fifteen lung patients were included for the feasibility test of the cost function. For all patients and all phases, delineation of the target volume and selected OARs such as esophagus, heart, and spinal cord was performed, and then cost values were calculated for all phases. After the breathing phases were ranked according to the cost values obtained, the relationship between score and dose distribution was evaluated by comparing dose volume histogram (DVH). Conclusions The proposed cost value function can play an important role in choosing an optimal phase with minimal effort, that is, without actual plan optimization at all phases.
Physica Medica | 2016
Y Noh; Tae-Ho Kim; Seong-Hee Kang; Dong-Su Kim; Min-Seok Cho; Kyeong-Hyeon Kim; Dong-Seok Shin; Do-Kun Yoon; Siyong Kim; Tae Suk Suh
PURPOSEnTo develop a real-time alignment monitoring system (RAMS) to compensate for the limitations of the conventional room-laser-based alignment system. To verify the feasibility of the RAMS, reproducibility and accuracy tests were conducted.nnnMETHODSnRAMS was composed of a room laser sensing array (RLSA), an electric circuit, an analog-to-digital converter (ADC), and a control PC. The RLSA was designed to arrange photodiodes in a pattern that results in the RAMS having a resolution of 1mm. The photodiodes were used for quantitative assessment of the alignment condition. To verify the usability of the developed system, we conducted tests of temporal reproducibility, repeatability, and accuracy.nnnRESULTSnThe results of the temporal reproducibility test suggested that the signal of the RAMS was stable with respect to time. Further, the repeatability test resulted in a maximum coefficient of variance of 1.14%, suggesting that the signal of the RAMS was stable over repeated set-ups. The accuracy test confirmed that the on and off signals could be distinguished by signal intensity, considering that the off signal was below 75% of the on signal in every case. In addition, we confirmed that the system can detect 1mm of movement by monitoring the pattern of the on and off signals.nnnCONCLUSIONnWe developed a room laser based alignment monitoring system. The feasibility test verified that the system is capable of quantitative alignment monitoring in real time. We expect that the RAMS can propose the potential of the room laser based alignment monitoring method.
Medical Physics | 2016
S Kang; Siyong Kim; D.G. Kim; Tae-Suk Kim; S.-H. Park; Dong-Seok Shin; Kyung-Hee Kim; Min-Seok Cho; Tae-Suk Suh
PURPOSEnTo propose a simple and effective cost value function to search optimal planning phase (gating window) and demonstrated its feasibility for respiratory correlated radiation therapy.nnnMETHODSnWe acquired 4DCT of 10 phases for 10 lung patients who have tumor located near OARs such as esophagus, heart, and spinal cord (i.e., central lung cancer patients). A simplified mathematical optimization function was established by using overlap volume histogram (OVH) between the target and organ at risk (OAR) at each phase and the tolerance dose of selected OARs to achieve surrounding OARs dose-sparing. For all patients and all phases, delineation of the target volume and selected OARs (esophagus, heart, and spinal cord) was performed (by one observer to avoid inter-observer variation), then cost values were calculated for all phases. After the breathing phases were ranked according to cost value function, the relationship between score and dose distribution at highest and lowest cost value phases were evaluated by comparing the mean/max dose.nnnRESULTSnA simplified mathematical cost value function showed noticeable difference from phase to phase, implying it is possible to find optimal phases for gating window. The lowest cost value which may result in lower mean/max dose to OARs was distributed at various phases for all patients. The mean doses of the OARs significantly decreased about 10% with statistical significance for all 3 OARs at the phase with the lowest cost value. Also, the max doses of the OARs were decreased about 2∼5% at the phase with the lowest cost value compared to the phase with the highest cost value.nnnCONCLUSIONnIt is demonstrated that optimal phases (in dose distribution perspective) for gating window could exist differently through each patient and the proposed cost value function can be a useful tool for determining such phases without performing dose optimization calculations. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014R1A2A1A10050270) and by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291).
Medical Physics | 2016
Min-Seok Cho; Siyong Kim; Tae-Suk Kim; D.G. Kim; S Kang; Kyung-Hee Kim; Dong-Seok Shin; Y Noh; Tae-Suk Suh
PURPOSEnTo develop a swallowing prediction system (SPS) using force sensing sensors and evaluate its feasibility.nnnMETHODSnThe SPS developed consists of force sensing sensor units, a thermoplastic mask, a signal transport device and a control PC installed with an in-house software. The SPS is designed to predict the pharyngeal stage of swallowing because it is known that internal organ movement occurs in pharyngeal stage. To detect prediction signal in the SPS, the force sensing sensor units were attached on both the submental muscle region and thyroid cartilage region of the thermoplastic mask. While the signal from the thyroid cartilage region informs the action of swallowing, the signal from the submental muscle region is utilized as a precursor for swallowing. Since the duration of swallowing is relatively short, using such precursor (or warning) signals for machine control is considered more beneficial. A volunteer study was conducted to evaluate the feasibility of the system. In this volunteer study, we intended to verify that the system could predict the pharyngeal stage of the swallowing. We measured time gaps between obtaining the warning signals in the SPS and starting points of the pharyngeal stage of swallowing.nnnRESULTSnThe measured data was examined whether the time gaps were in reasonable order to be easily utilized. The mean and standard deviation values of these time gaps were 0.550 s ± 0.183 s. in 8 volunteers.nnnCONCLUSIONnThe proposed method was able to predict the on-set of swallowing of human subjects inside the thermoplastic mask, which has never been possible with other monitoring systems such as camera-based monitoring system. With the prediction ability of swallowing incorporated into the machine control mechanism (in the future), beam delivery can be controlled to skip swallowing periods and significant dosimetric gain is expected in head & neck cancer treatments. This work was supported by the Radiation Technology R&D program (No. 2015M2A2A7038291) and by the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.
Medical Physics | 2016
Y Noh; Siyong Kim; Tae-Suk Kim; S Kang; D.G. Kim; Min-Seok Cho; Kyung-Hee Kim; Dong-Seok Shin; Tae-Suk Suh
PURPOSEnTo develop a real-time alignment monitoring system (RAMS) to compensate for the limitations of the conventional room laser based alignment system, and to verify the feasibility of the RAMS.nnnMETHODSnThe RAMS was composed of a room laser sensing array (RLSA), an analog-todigital converter, and a control PC. In the RLSA, seven photodiodes (each in 1 mm width) are arranged in a pattern that the RAMS provides alignment in 1 mm resolution. It works based on detecting laser light aligned on one of photodiodes. When misaligned, the laser would match with different photodiode(s) giving signal at unexpected location. Thus, how much displaced can be determined. To verify the reproducibility of the system with respect to time as well as repeated set-ups, temporal reproducibility and repeatability test was conducted. The accuracy of the system was tested by obtaining detection signals with varying laser-match positions.nnnRESULTSnThe signal of the RAMS was found to be stable with respect to time. The repeatability test resulted in a maximum coefficient of variance of 1.14%, suggesting that the signal of the RAMS was stable over repeated set-ups. In the accuracy test, signals between when the laser was aligned and notaligned with any of sensors could be distinguished by signal intensity. The signals of not-aligned sensors were always below 75% of the signal of the aligned sensor. It was confirmed that the system could detect 1 mm of movement by monitoring the pattern of signals, and could observe the movement of the system in real-time.nnnCONCLUSIONnWe developed a room laser based alignment monitoring system. The feasibility test verified that the system is capable of quantitative alignment monitoring in real time. The system is relatively simple, not expensive, and considered to be easily incorporated into conventional room laser systems for real-time alignment monitoring. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014R1A2A1A10050270) and by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291).
Medical Physics | 2016
Kyung-Hee Kim; D.G. Kim; S Kang; Tae-Suk Kim; Dong-Seok Shin; Min-Seok Cho; Y Noh; Tae-Suk Suh
PURPOSEnThe inverse geometry computed tomography (IGCT) composed of multiple source and small size detector has several merits such as reduction of scatter effect and large volumetric imaging within one rotation without cone-beam artifact, compared to conventional cone-beam computed tomography (CBCT). By using this multi-source characteristics, we intend to present a selective and multiple interior region-of-interest (ROI) imaging method by using a designed source on-off sequence of IGCT.nnnMETHODSnAll of the IGCT sources are operated one by one sequentially, and each projection in the shape of narrow cone-beam covers its own partial volume of full field of view (FOV) determined from system geometry. Thus, through controlling multi source operation, limited irradiation within ROI is possible and selective radon space data for ROI imaging can be acquired without additional X-ray filtration. With this feature, we designed a source on-off sequence for multi ROI-IGCT imaging, and projections of ROI-IGCT were generated by using the on-off sequence. Multi ROI-IGCT images were reconstructed by using filtered back-projection algorithm. All these imaging process of our study has been performed by utilizing digital phantom and patient CT data. ROI-IGCT images of the phantom were compared to CBCT image and the phantom data for the image quality evaluation.nnnRESULTSnImage quality of ROI-IGCT was comparable to that of CBCT. However, the distal axial-plane from the FOV center, large cone-angle region, ROI-IGCT showed uniform image quality without significant cone-beam artifact contrary to CBCT.nnnCONCLUSIONnROI-IGCT showed comparable image quality and has the capability to provide multi ROI image within a rotation. Projection of ROI-IGCT is performed by selective irradiation, hence unnecessary imaging dose to non-interest region can be reduced. In this regard, it seems to be useful for diagnostic or image guidance purpose in radiotherapy such as low dose target localization and patient alignment. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014R1A2A1A10050270) and by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291).
Medical Physics | 2016
Dong-Seok Shin; S Kang; D.G. Kim; Tae-Suk Kim; Kyung-Hee Kim; Min-Seok Cho; Tae-Suk Suh
PURPOSEnThe difference between three-dimensional (3D) and four-dimensional (4D) dose is affected by factors such as tumor size and motion. To quantitatively analyze the effects of these factors, a phantom that can independently control for each factor is required. The purpose of this study is to develop a deformable lung phantom with the above attributes and evaluate characteristics.nnnMETHODSnA phantom was designed to simulate diaphragm motion with amplitude in the range 1 to 7 cm and various periods of regular breathing. To simulate different size tumors, tumors were produced by pouring liquid silicone into custom molds created by a 3D printer. The accuracy of phantom diaphragm motion was assessed using calipers and protractor. To control tumor motion, tumor trajectories were evaluated using 4D computed tomography (CT), and diaphragm-tumor correlation curve was calculated by curve fitting method. Three-dimensional dose and 4D dose were calculated and compared according to tumor motion.nnnRESULTSnThe accuracy of phantom diaphragm motion was less than 1 mm. Maximum tumor motion amplitudes in the left-right and anterior-posterior directions were 0.08 and 0.12 cm, respectively, in a 10 cm3 tumor, and 0.06 and 0.27 cm, respectively, in a 90 cm3 tumor. The diaphragm-tumor correlation curve showed that tumor motion in the superior-inferior direction was increased with increasing diaphragm motion. In the 10 cm3 tumor, the tumor motion was larger than the 90 cm3 tumor. According to tumor motion, variation of dose difference between 3D and 4D was identified.nnnCONCLUSIONnThe developed phantom can independently control factors such as tumor size and motion. In potentially, this phantom can be used to quantitatively analyze the dosimetric impact of respiratory motion according to the factors that influence the difference between 3D and 4D dose. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014R1A2A1A10050270) and by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291).
Medical Physics | 2016
Dong-Kee Kim; Sang Jin Lee; Siyong Kim; S Kang; Tae-Suk Kim; Kyung-Hee Kim; Min-Seok Cho; Dong-Seok Shin; Y Noh; Tae-Suk Suh
PURPOSEnPatient breathing-related sorting method of projections in 4D digital tomosythesis (DTS) can be suffered from severe artifacts due to non-uniform angle distribution of projections and noncoplanar reconstructed images for each phase. In this study, we propose a method for optimally acquiring projection images in 4D DTS.nnnMETHODSnIn this method every pair of projections at x-ray tubes gantry angles symmetrical with respect to the center of the range of gantry rotation is obtained at the same respiration amplitude. This process is challenging but becomes feasible with visual-biofeedback using a patient specific respiration guide wave which is in sinusoidal shape (i.e., smooth and symmetrical enough). Depending on scan parameters such as the number of acquisition points per cycle, total scan angle and projections per acquisition amplitude, acquisition sequence is pre-determined. A simulation study for feasibility test was performed. To mimic actual situation closely, a group of volunteers were recruited and breathing data were acquired both with/without biofeedback. Then, x-ray projections for a humanoid phantom were virtually performed following (1) the breathing data from volunteers without guide, (2) the breathing data with guide and (3) the planned breathing data (i.e., ideal situation). Images from all of 3 scenarios were compared.nnnRESULTSnScenario #2 showed significant artifact reduction compared to #1 while did minimal increase from the ideal situation (i.e., scenario #3). We verified the performance of the method with regard to the degree of inaccuracy during respiratory guiding. Also, the scan angle dependence-related differences in the DTS images could reduce between using the proposed method and the established patient breathing-related sorting method.nnnCONCLUSIONnThrough the proposed 4D DTS method, it is possible to improve the accuracy of image guidance between intra/inter fractions with relatively low imaging dose. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014R1A2A1A10050270) and by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291).