Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dong Sung An is active.

Publication


Featured researches published by Dong Sung An.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5

Xiao-Feng Qin; Dong Sung An; Irvin S. Y. Chen; David Baltimore

Double-stranded RNAs ≈21 nucleotides long [small interfering RNA (siRNA)] are recognized as powerful reagents to reduce the expression of specific genes. To use them as reagents to protect cells against viral infection, effective methods for introducing siRNAs into primary cells are required. Here, we describe success in constructing a lentivirus-based vector to introduce siRNAs against the HIV-1 coreceptor, CCR5, into human peripheral blood T lymphocytes. With high-titer vector stocks, >40% of the peripheral blood T lymphocytes could be transduced, and the expression of a potent CCR5-siRNA resulted in up to 10-fold inhibition of CCR5 expression on the cell surface over a period of 2 weeks in the absence of selection. In contrast, the expression of another major HIV-1 coreceptor, CXCR4, was not affected. Importantly, blocking CCR5 expression by siRNAs provided a substantial protection for the lymphocyte populations from CCR5-tropic HIV-1 virus infection, dropping infected cells by 3- to 7-fold; only a minimal effect on infection by a CXCR4-tropic virus was observed. Thus, our studies demonstrate the feasibility and potential of lentiviral vector-mediated delivery of siRNAs as a general means of intracellular immunization for the treatment of HIV-1 and other viral diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates

Dong Sung An; Robert E. Donahue; Masakazu Kamata; Betty Poon; Mark E. Metzger; Si-Hua Mao; Aylin C. Bonifacino; Allen Krouse; Jean-Luc Darlix; David Baltimore; F. Xiao-Feng Qin; Irvin S. Y. Chen

RNAi is a powerful method for suppressing gene expression that has tremendous potential for therapeutic applications. However, because endogenous RNAi plays a role in normal cellular functions, delivery and expression of siRNAs must be balanced with safety. Here we report successful stable expression in primates of siRNAs directed to chemokine (c-c motif) receptor 5 (CCR5) introduced through CD34+ hematopoietic stem/progenitor cell transplant. After hematopoietic reconstitution, to date 14 months after transplant, we observe stably marked lymphocytes expressing siRNAs and consistent down-regulation of chemokine (c-c motif) receptor 5 expression. The marked cells are less susceptible to simian immunodeficiency virus infection ex vivo. These studies provide a successful demonstration that siRNAs can be used together with hematopoietic stem cell transplant to stably modulate gene expression in primates and potentially treat blood diseases such as HIV-1.


Cancer Research | 2008

Suppression of Prostate Cancer Nodal and Systemic Metastasis by Blockade of the Lymphangiogenic Axis

Jeremy B. Burton; Saul J. Priceman; James L. Sung; Ebba Brakenhielm; Dong Sung An; Bronislaw Pytowski; Kari Alitalo; Lily Wu

Lymph node involvement denotes a poor outcome for patients with prostate cancer. Our group, along with others, has shown that initial tumor cell dissemination to regional lymph nodes via lymphatics also promotes systemic metastasis in mouse models. The aim of this study was to investigate the efficacy of suppressive therapies targeting either the angiogenic or lymphangiogenic axis in inhibiting regional lymph node and systemic metastasis in subcutaneous and orthotopic prostate tumor xenografts. Both androgen-dependent and more aggressive androgen-independent prostate tumors were used in our investigations. Interestingly, we observed that the threshold for dissemination is lower in the vascular-rich prostatic microenvironment compared with subcutaneously grafted tumors. Both vascular endothelial growth factor-C (VEGF-C) ligand trap (sVEGFR-3) and antibody directed against VEGFR-3 (mF4-31C1) significantly reduced tumor lymphangiogenesis and metastasis to regional lymph nodes and distal vital organs without influencing tumor growth. Conversely, angiogenic blockade by short hairpin RNA against VEGF or anti-VEGFR-2 antibody (DC101) reduced tumor blood vessel density, significantly delayed tumor growth, and reduced systemic metastasis, although it was ineffective in reducing lymphangiogenesis or nodal metastasis. Collectively, these data clarify the utility of vascular therapeutics in prostate tumor growth and metastasis, particularly in the context of the prostate microenvironment. Our findings highlight the importance of lymphangiogenic therapies in the control of regional lymph node and systemic metastasis.


Blood | 2010

A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model

Saki Shimizu; Patrick Hong; Balamurugan Arumugam; Lauren Pokomo; Joshua Boyer; Naoya Koizumi; Panyamol Kittipongdaja; Angela Chen; Greg Bristol; Zoran Galic; Jerome A. Zack; Otto O. Yang; Irvin S. Y. Chen; Benhur Lee; Dong Sung An

Inhibiting the expression of the HIV-1 coreceptor CCR5 holds great promise for controlling HIV-1 infection in patients. Here we report stable knockdown of human CCR5 by a short hairpin RNA (shRNA) in a humanized bone marrow/liver/thymus (BLT) mouse model. We delivered a potent shRNA against CCR5 into human fetal liver-derived CD34(+) hematopoietic progenitor/stem cells (HPSCs) by lentiviral vector transduction. We transplanted vector-transduced HPSCs solidified with Matrigel and a thymus segment under the mouse kidney capsule. Vector-transduced autologous CD34(+) cells were subsequently injected in the irradiated mouse, intended to create systemic reconstitution. CCR5 expression was down-regulated in human T cells and monocytes/macrophages in systemic lymphoid tissues, including gut-associated lymphoid tissue, the major site of HIV-1 replication. The shRNA-mediated CCR5 knockdown had no apparent adverse effects on T-cell development as assessed by polyclonal T-cell receptor Vbeta family development and naive/memory T-cell differentiation. CCR5 knockdown in the secondary transplanted mice suggested the potential of long-term hematopoietic reconstitution by the shRNA-transduced HPSCs. CCR5 tropic HIV-1 infection was effectively inhibited in mouse-derived human splenocytes ex vivo. These results demonstrate that lentiviral vector delivery of shRNA into human HPSCs could stably down-regulate CCR5 in systemic lymphoid organs in vivo.


Molecular Therapy | 2005

Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo

Osamu Sugiyama; Dong Sung An; Sam Kung; Brian T. Feeley; Seth C. Gamradt; Nancy Q. Liu; Irvin S. Y. Chen; Jay R. Lieberman

We examined the potential of ex vivo gene therapy to enhance bone repair using lentiviral vectors encoding either enhanced green fluorescent protein (EGFP) as a reporter gene or bone morphogenetic protein-2 (BMP-2) downstream of either the cytomegalovirus immediate early (CMV) promoter or the murine leukemia virus long terminal repeat (RhMLV) promoter derived from a murine retrovirus adapted to replicate in a rhesus macaque. In vitro, rat bone marrow stromal cells (BMSCs) transduced with Lenti-CMV-EGFP or Lenti-RhMLV-EGFP demonstrated over 90% transduction efficiency at 1 week and continued to demonstrate stable expression for 8 weeks. ELISA results demonstrated that lentivirus-mediated gene transfer into BMSCs induced stable BMP-2 production in vitro for 8 weeks. Increased EGFP and BMP-2 production was noted with the RhMLV promoter. In addition, we implanted BMSCs transduced with Lenti-RhMLV-BMP-2 into a muscle pouch in the hind limbs of severe combined immune deficient mice. Robust bone formation was noted in animals that received Lenti-RhMLV-BMP-2 cells at 3 weeks. These results demonstrate that lentiviral vectors expressing BMP-2 can induce long-term gene expression in vitro and new bone formation in vivo under the control of the RhMLV promoter. Prolonged gene expression may be advantageous when developing tissue engineering strategies to repair large bone defects.


Journal of Virology | 2000

Marking and Gene Expression by a Lentivirus Vector in Transplanted Human and Nonhuman Primate CD34+Cells

Dong Sung An; Robert P. Wersto; Brian A. Agricola; Mark E. Metzger; Stephanie Lu; Rafael G. Amado; Irvin S. Y. Chen; Robert E. Donahue

ABSTRACT Recently, gene delivery vectors based on human immunodeficiency virus (HIV) have been developed as an alternative mode of gene delivery. These vectors have a number of advantages, particularly in regard to the ability to infect cells which are not actively dividing. However, the use of vectors based on human immunodeficiency virus raises a number of issues, not the least of which is safety; therefore, further characterization of marking and gene expression in different hematopoietic lineages in primate animal model systems is desirable. We use two animal model systems for gene therapy to test the efficiency of transduction and marking, as well as the safety of these vectors. The first utilizes the rhesus animal model for cytokine-mobilized autologous peripheral blood CD34+ cell transplantation. The second uses the SCID-human (SCID-hu) thymus/liver chimeric graft animal model useful specifically for human T-lymphoid progenitor cell reconstitution. In the rhesus macaques, detectable levels of vector were observed in granulocytes, lymphocytes, monocytes, and, in one animal with the highest levels of marking, erythrocytes and platelets. In transplanted SCID-hu mice, we directly compared marking and gene expression of the lentivirus vector and a murine leukemia virus-derived vector in thymocytes. Marking was observed at comparable levels, but the lentivirus vector bearing an internal cytomegalovirus promoter expressed less efficiently than did the murine retroviral vector expressed from its own long terminal repeats. In assays for infectious HIV type 1 (HIV-1), no replication-competent HIV-1 was detected in either animal model system. Thus, these results indicate that while lentivirus vectors have no apparent deleterious effects and may have advantages over murine retroviral vectors, further study of the requirements for optimal use are warranted.


Human Gene Therapy | 2003

Efficient lentiviral vectors for short hairpin RNA delivery into human cells.

Dong Sung An; Yiming Xie; Si Hua Mao; Kouki Morizono; Sam K. P. Kung; Irvin S. Y. Chen

RNA interference is an evolutionarily conserved process of gene silencing that in plants serves as a natural defense mechanism against exogenous viral agents. RNA interference is becoming an important tool for the study of biological processes through reverse genetics and has potential for therapeutic applications in humans; however, effective delivery is still a major issue. Small interfering RNA (siRNA) and short hairpin RNA (shRNA) have been introduced into cells by transfection of chemically synthesized and RNA expression via plasmid cassettes utilizing RNA polymerase III transcription. The employment of siRNA/shRNA for gene knockout requires an efficient stable transfection or transduction process. Here, we report the successful construction of lentiviral vectors to express shRNA stably in human cells. We demonstrate that lentiviral vectors expressing siRNA directed to the reporter gene luciferase, when stably transduced into human cells without drug selection, are capable of protecting the cells from infection by a lentiviral vector encoding humanized firefly luciferase as a reporter gene. We observed 16- to 43-fold reduction of gene expression in infected cells transduced with shRNA vectors relative to cells transduced with control vectors. This model system demonstrates the utility of lentiviral vectors to stably express shRNA as both a cellular gene knockout tool and as a means to inhibit exogenous infectious agents such as viruses in human cells.


Journal of Virology | 2001

Lentivirus Vector-Mediated Hematopoietic Stem Cell Gene Transfer of Common Gamma-Chain Cytokine Receptor in Rhesus Macaques

Dong Sung An; Sam K. P. Kung; Aylin C. Bonifacino; Robert P. Wersto; Mark E. Metzger; Brian A. Agricola; Si Hua Mao; Irvin S. Y. Chen; Robert E. Donahue

ABSTRACT Nonhuman primate model systems of autologous CD34+ cell transplant are the most effective means to assess the safety and capabilities of lentivirus vectors. Toward this end, we tested the efficiency of marking, gene expression, and transplant of bone marrow and peripheral blood CD34+ cells using a self-inactivating lentivirus vector (CS-Rh-MLV-E) bearing an internal murine leukemia virus long terminal repeat derived from a murine retrovirus adapted to replicate in rhesus macaques. In vitro cytokine stimulation was not required to achieve efficient transduction of CD34+ cells resulting in marking and gene expression of the reporter gene encoding enhanced green fluorescent protein (EGFP) following transplant of the CD34+ cells. Monkeys transplanted with mobilized peripheral blood CD34+ cells resulted in EGFP expression in 1 to 10% of multilineage peripheral blood cells, including red blood cells and platelets, stable for 15 months to date. The relative level of gene expression utilizing this vector is 2- to 10-fold greater than that utilizing a non-self-inactivating lentivirus vector bearing the cytomegalovirus immediate-early promoter. In contrast, in animals transplanted with autologous bone marrow CD34+ cells, multilineage EGFP expression was evident initially but diminished over time. We further tested our lentivirus vector system by demonstrating gene transfer of the human common gamma-chain cytokine receptor gene (γc), deficient in X-linked SCID patients and recently successfully used to treat disease. Marking was 0.42 and .001 HIV-1 vector DNA copy per 100 cells in two animals. To date, all EGFP- and γc-transplanted animals are healthy. This system may prove useful for expression of therapeutic genes in human hematopoietic cells.


Journal of Virology | 2001

Envelope gene of the human endogenous retrovirus HERV-W encodes a functional retrovirus envelope.

Dong Sung An; Yiming Xie; Irvin S. Y. Chen

ABSTRACT A member of the human endogenous retrovirus (HERV) family termed HERV-W encodes a highly fusogenic membrane glycoprotein that appears to be expressed specifically in the placenta. It is unclear whether the glycoproteins of the HERVs can serve as functional retrovirus envelope proteins to confer infectivity on retrovirus particles. We found that the HERV-W envelope glycoprotein can form pseudotypes with human immunodeficiency virus type 1 virions and confers tropism for CD4-negative cells. Thus, the HERV-W env gene represents the first HERV env gene demonstrated to encode the functional properties of a retrovirus envelope glycoprotein.


Clinical and Vaccine Immunology | 2007

Use of a novel chimeric mouse model with a functionally active human immune system to study human immunodeficiency virus type 1 infection

Dong Sung An; Betty Poon; Raphaël Ho Tsong Fang; Kees Weijer; Bianca Blom; Hergen Spits; Irvin S. Y. Chen; Christel H. Uittenbogaart

ABSTRACT The goal of this study was to develop a small-animal model to study human immunodeficiency virus type 1 (HIV-1) pathogenesis in blood and primary and secondary lymphoid organs. Rag2−/−γc−/− mice that are neonatally injected with human CD34+ cells develop a functional human immune system (HIS), with human hematopoietic cells being found in the thymuses, peripheral blood, spleens, and bone marrow of the animals (hereafter these animals are referred to as HIS-Rag2−/−γc−/− mice). HIS-Rag2−/−γc−/− mice were infected with small amounts of CCR5-tropic HIV-1. Viral replication and immunophenotypic changes in the human cells in peripheral blood and lymphoid organs were examined. The productive infection of human cells in peripheral blood, thymus and spleen tissue, and bone marrow was detected. Ratios of CD4+ T cells to CD8+ T cells in the infected animals declined. Although no specific anti-HIV-1 immune responses were detected, immunoglobulin M (IgM) and IgG antibodies to an unidentified fetal calf serum protein present in the virus preparation were found in the inoculated animals. Thus, we have shown that the HIS-Rag2−/−γc−/− mouse model can be used for infection with low doses of CCR5-tropic HIV-1, which is most commonly transmitted during primary infections. HIS-Rag2−/−γc−/− mice can serve as a small-animal model for investigating HIV-1 pathogenesis and testing potential HIV-1 therapies, and studies with this model may replace some long and costly studies with nonhuman primates.

Collaboration


Dive into the Dong Sung An's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saki Shimizu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Baltimore

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Joshua Boyer

University of California

View shared research outputs
Top Co-Authors

Avatar

Robert E. Donahue

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ruth Cortado

University of California

View shared research outputs
Top Co-Authors

Avatar

Sanggu Kim

University of California

View shared research outputs
Top Co-Authors

Avatar

Si Hua Mao

University of California

View shared research outputs
Top Co-Authors

Avatar

Yiming Xie

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge