Dong U. Ahn
Iowa State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dong U. Ahn.
Meat Science | 2010
Wangang Zhang; Shan Xiao; Himali Samaraweera; Eun Joo Lee; Dong U. Ahn
In recent years, much attention has been paid to develop meat and meat products with physiological functions to promote health conditions and prevent the risk of diseases. This review focuses on strategies to improve the functional value of meat and meat products. Value improvement can be realized by adding functional compounds including conjugated linoneleic acid, vitamin E, n3 fatty acids and selenium in animal diets to improve animal production, carcass composition and fresh meat quality. In addition, functional ingredients such as vegetable proteins, dietary fibers, herbs and spices, and lactic acid bacteria can be directly incorporated into meat products during processing to improve their functional value for consumers. Functional compounds, especially peptides, can also be generated from meat and meat products during processing such as fermentation, curing and aging, and enzymatic hydrolysis. This review further discusses the current status, consumer acceptance, and market for functional foods from the global viewpoints. Future prospects for functional meat and meat products are also discussed.
Meat Science | 1998
Dong U. Ahn; Dennis G. Olson; Cheorun Jo; X. Chen; C. Wu; J. I. Lee
Effects of packaging and irradiation combinations on lipid oxidation, off-flavor, and color changes of raw patties prepared from three pork muscles were studied. Patties were prepared from each of the ground L. dorsi (L. thoracis and lumborum), psoas, and R. femoris muscles of pig, packaged either in oxygen permeable polyethylene bags or impermeable nylon/polyethylene bags, irradiated with an electron beam at 0 or 4.5 kGy dose, and then stored up to two weeks at 4 °C. Lipid 8 oxidation and color of the patties were determined after 0, 3, 7, and 14 days of storage, and volatiles 24 hr after irradiation. Irradiation and high fat content accelerated the lipid oxidation in raw meat during storage. Oxygen availability during storage, however, was more important than irradiation on the lipid oxidation and color values of raw patties. Irradiated meat produced more volatiles than nonirradiated patties, and the proportion of volatiles varied by the packaging-irradiation conditions of patties. Irradiation produced many unidentified volatiles that could be responsible for the off-odor in irradiated raw meat. No single volatile components but total volatiles, however, could be used to predict lipid oxidation status of raw meat.
Meat Science | 2000
Dong U. Ahn; Cheorun Jo; Dennis G. Olson
Longissimus dorsi muscle strips, approximately 20 mm long, 40 mm wide, and 5 mm thick (4 g), of pig were randomly placed in a single layer into labeled bags (four strips per bag) and packaged either aerobically or under vacuum. Samples in the bags were irradiated at 0, 5, or 10 kGy and stored at 4°C for 5 days. Lipid oxidation, the amount and identity of volatile components and sensory characteristics of raw pork strips were determined at 0 and 5 days of storage. Irradiated muscle strips produced more 2-thiobarbituric acid reactive substances (TBARS) than nonirradiated only in aerobic packaging during storage. Irradiation had no effect on the production of volatiles related to lipid oxidation, but produced a few sulfur-containing compounds not found in nonirradiated meat. This indicates that the major contributor of off-odor in irradiated meat is not lipid oxidation, but radiolytic breakdown of sulfur-containing amino acids. Many of the irradiation-dependent volatiles reduced to 50 to 25% levels during the 5-days storage under aerobic conditions. Irradiated muscle strips produced stronger irradiation odor than nonirradiated, but no irradiation dose or storage effect was found. Irradiation had no negative effect on the acceptance of meat, and approximately 70% of sensory panels characterized irradiation odor as barbecued-corn-like odor.
Meat Science | 2000
Min Du; Dong U. Ahn; Ki-Chang Nam; J.L Sell
Forty-eight, 27-week-old White Leghorn hens were fed a diet containing 0, 1.25, 2.5 or 5.0% conjugated linoleic acid (CLA) for 12 weeks. At the end of the 12-week feeding trial, hens were slaughtered, and boneless, skinless breast and leg meats were separated from carcasses. Meats were ground through 9 and 3-mm plates, and patties were prepared. Patties prepared from each dietary treatment were divided into two groups and either vacuum- or aerobic-packaged. Patties were irradiated at 0 or 3.0 kGy using a linear accelerator and stored at 4°C. Samples were analyzed for thiobarbituric acid reactive substances, volatile profiles, color and odor characteristics at 0 and 7 days of storage. Dietary CLA reduced the degree of lipid oxidation in raw chicken meat during storage. The content of hexanal and pentanal in raw chicken meat significantly decreased as dietary CLA level increased. Irradiation accelerated lipid oxidation in meat with aerobic packaging, but irradiation effect was not as significant as that of the packaging. Dietary CLA treatment improved the color stability of chicken patties. Color a*-value of irradiated raw chicken meat was higher than that of the nonirradiated meat. Dietary CLA decreased the content of polyunsaturated fatty acid and increased CLA in chicken muscles, which improved lipid and color stability and reduced volatile production in irradiated and nonirradiated raw chicken meat during storage.
Journal of Animal Science | 2008
Peter J. Lammers; B. J. Kerr; T. E. Weber; Kristjan Bregendahl; Steven M. Lonergan; Kenneth J. Prusa; Dong U. Ahn; William C. Stoffregen; William A. Dozier; Mark S. Honeyman
The effects of dietary crude glycerin on growth performance, carcass characteristics, meat quality indices, and tissue histology in growing pigs were determined in a 138-d feeding trial. Crude glycerin utilized in the trial contained 84.51% glycerin, 11.95% water, 2.91% sodium chloride, and 0.32% methanol. Eight days postweaning, 96 pigs (48 barrows and 48 gilts, average BW of 7.9 +/- 0.4 kg) were allotted to 24 pens (4 pigs/pen), with sex and BW balanced at the start of the experiment. Dietary treatments were 0, 5, and 10% crude glycerin inclusion in corn-soybean meal-based diets and were randomly assigned to pens. Diets were offered ad libitum in meal form and formulated to be equal in ME, sodium, chloride, and Lys, with other AA balanced on an ideal AA basis. Pigs and feeders were weighed every other week to determine ADG, ADFI, and G:F. At the end of the trial, all pigs were scanned using real-time ultrasound and subsequently slaughtered at a commercial abattoir. Blood samples were collected pretransport and at the time of slaughter for plasma metabolite analysis. In addition, kidney, liver, and eye tissues were collected for subsequent examination for lesions characteristic of methanol toxicity. After an overnight chilling of the carcass, loins were removed for meat quality, sensory evaluation, and fatty acid profile analysis. Pig growth, feed intake, and G:F were not affected by dietary treatment. Dietary treatment did not affect 10th-rib backfat, LM area, percent fat free lean, meat quality, or sensory evaluation. Loin ultimate pH was increased (P = 0.06) in pigs fed the 5 and 10% crude glycerin compared with pigs fed no crude glycerin (5.65 and 5.65 versus 5.57, respectively). Fatty acid profile of the LM was slightly changed by diet with the LM from pigs fed 10% crude glycerin having less linoleic acid (P < 0.01) and more eicosapentaenoic acid (P = 0.02) than pigs fed the 0 or 5% crude glycerin diets. Dietary treatment did not affect blood metabolites or frequency of lesions in the examined tissues. This experiment demonstrated that pigs can be fed up to 10% crude glycerin with no effect on pig performance, carcass composition, meat quality, or lesion scores.
Journal of Agricultural and Food Chemistry | 2011
Wangang Zhang; Shan Xiao; Eun Joo Lee; Dong U. Ahn
A total of 120 4-week-old broiler chickens were allotted to 12 pens and fed one of three diets including control, oxidized diet (5% oxidized oil), or antioxidant-added diet (500 IU vitamin E) for 2 weeks. Blood samples were collected at the end of feeding trial, and breast muscles were sampled immediately after slaughter. Breast meats were also collected 24 h after slaughter and used for meat quality measurements. Oxidative stress in blood, lipid and protein oxidation, and sarcoplasmic reticulum Ca²(+)-ATPase (SERCA) activity of breast muscle were determined. The oxidized diet increased oxidative stress in blood and increased carbonyl content in breast meat compared with the other two dietary treatments (P < 0.05). Lipid oxidation of breast muscles with the antioxidant-supplemented diet was lower than that with the oxidized and control diet groups (P < 0.05). Meat from birds fed the oxidized diet showed higher drip loss after 1 and 3 days of storage and greater 0-1 h post-mortem pH decline (P < 0.05). Significant differences in specific SERCA activity in breast muscles from birds fed control and oxidized diets (P < 0.05) were detected. This suggested that dietary oxidized oil induced oxidative stress in live birds and increased lipid and protein oxidation in breast muscle. Decrease in SERCA activity in breast muscles due to oxidative stress in live animals accelerated post-mortem glycolysis, which sped the pH drop after slaughter and increased drip loss, indicating that oxidation of diet can cause PSE-like (pale, soft, and exudative) conditions in broiler breast muscles.
Meat Science | 2005
Eun Lee; Dong U. Ahn
The effects of adding 1%, 2% and 3% plum extract on the quality characteristics of vacuum-packaged, irradiated ready-to-eat turkey breast rolls were determined. Turkey breast rolls were sliced, packaged and irradiated at 0 or 3 kGy using a Linear Accelerator. Lipid oxidation, volatile profiles, color, texture, proximate analysis and sensory characteristics of sliced turkey breast rolls were determined at 0 and 7 days of storage. Addition of plum extract had no detectable effect on the proximate analysis of turkey breast rolls. Plum extract increased a* and b* values, and decreased L* value of turkey breast rolls due to the original color of plum extract. Addition of >2% plum extract to turkey breast rolls was effective in controlling lipid oxidation of irradiated meat and the production of aldehydes (hexanal, heptanal, octanal, and nonanal) in non-irradiated meat at Day 0. Texture of turkey breast rolls was not influenced, but juiciness was increased by plum extract. Therefore, addition of 3% or higher of plum extract is recommended to improve mouth-feel and antioxidant effect in irradiated turkey breast rolls. However, the color of turkey breast rolls with 3% plum extract was dark and might not be appealing to consumers.
Journal of Food Science | 2011
Himali Samaraweera; Wangang Zhang; Eun Joo Lee; Dong U. Ahn
Phosphopeptides are among the most interesting biomolecules with characteristic molecular structure and functions. They usually contain clusters of phosphoserines, which can effectively bind calcium and iron, and inhibit formation of insoluble calcium phosphates or iron complexes. Therefore, phosphopeptides can increase calcium or iron bioavailability and prevent lipid oxidation in foods. Milk protein casein has been currently used by industry to produce phosphopeptides. Egg yolk phosvitin is considered as the most phosphorylated protein found in the nature. Phosvitin from egg yolk can be much better source for producing phosphopeptides with varying sizes and functions than casein because it contains much greater number of phosphates in the molecule than casein. However, still phosvitin has not been subjected to considerable attention with regard to bioactive peptides production.
Asian-australasian Journal of Animal Sciences | 2013
Dinesh D. Jayasena; Dong U. Ahn; Ki Chang Nam; Cheorun Jo
Flavour comprises mainly of taste and aroma and is involved in consumers’ meat-buying behavior and preferences. Chicken meat flavour is supposed to be affected by a number of ante- and post-mortem factors, including breed, diet, post-mortem ageing, method of cooking, etc. Additionally, chicken meat is more susceptible to quality deterioration mainly due to lipid oxidation with resulting off-flavours. Therefore, the intent of this paper is to highlight the mechanisms and chemical compounds responsible for chicken meat flavour and off-flavour development to help producers in producing the most flavourful and consistent product possible. Chicken meat flavour is thermally derived and the Maillard reaction, thermal degradation of lipids, and interaction between these 2 reactions are mainly responsible for the generation of flavour and aroma compounds. The reaction of cysteine and sugar can lead to characteristic meat flavour specially for chicken and pork. Volatile compounds including 2-methyl-3-furanthiol, 2-furfurylthiol, methionol, 2,4,5-trimethyl-thiazole, nonanol, 2-trans-nonenal, and other compounds have been identified as important for the flavour of chicken. However 2-methyl-3-furanthiol is considered as the most vital chemical compound for chicken flavour development. In addition, a large number of heterocyclic compounds are formed when higher temperature and low moisture conditions are used during certain cooking methods of chicken meat such as roasting, grilling, frying or pressure cooking compared to boiled chicken meat. Major volatile compounds responsible for fried chicken are 3,5-dimethyl-1,2,4-trithiolanes, 2,4,6-trimethylperhydro-1,3,5-dithiazines, 3,5-diisobutyl-1,2,4-trithiolane, 3-methyl-5-butyl-1,2,4-trithiolane, 3-methyl-5-pentyl-1,2,4-trithiolane, 2,4-decadienal and trans-4,5-epoxy-trans-2-decenal. Alkylpyrazines were reported in the flavours of fried chicken and roasted chicken but not in chicken broth. The main reason for flavour deterioration and formation of undesirable “warmed over flavour” in chicken meat products are supposed to be the lack of α-tocopherol in chicken meat.
Meat Science | 2007
Ki-Chang Nam; K.Y. Ko; Byungrok Min; H. Ismail; Eun Joo Lee; Joseph C. Cordray; Dong U. Ahn
Lipid oxidation, color, and volatiles of double-packaged pork loins with various oleoresin or oleoresin-tocopherol combinations were determined to establish the best oleoresin-tocopherol conditions that can improve the quality of irradiated raw and cooked pork loins. Rosemary and α-tocopherol combination at 0.05% and 0.02% of meat weight, respectively, showed the most potent antioxidant effects in reducing both TBARS values and the amounts of volatile aldehydes in irradiated raw and cooked pork loins. The antioxidant combination, however, did not affect the production of sulfur volatiles responsible for irradiation off-odor and showed little effects on color changes in irradiated raw and cooked pork loins. Exposing double-packaged irradiated pork to aerobic conditions for 3days during the 10-day storage was effective in controlling both lipid oxidation and irradiation off-odor, regardless of packaging sequences.