Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dong Zhu is active.

Publication


Featured researches published by Dong Zhu.


Environmental Pollution | 2018

Spatial and temporal distribution of antibiotic resistomes in a peri-urban area is associated significantly with anthropogenic activities

Qian Xiang; Qing-Lin Chen; Dong Zhu; Xin-Li An; Xiao-Ru Yang; Jian-Qiang Su; Min Qiao; Yong-Guan Zhu

With the rapid development of urbanization and industrialization, the peri-urban areas are often the sites for waste dumps, which may exacerbate the occurrence and spread of antibiotic resistance from waste to soil bacteria. However, the profiles of antibiotic resistomes and the associated factors influencing their dissemination in peri-urban areas have not been fully explored. Here, we characterized the antibiotic resistance genes (ARGs) in peri-urban arable and pristine soils in four seasons at the watershed scale, by using high-throughput qPCR. ARGs in peri-urban soils were diverse and abundant, with a total of 222 genes were detected in the peri-urban soil samples. The arable soil harbored more diverse ARGs compared to the pristine soils, and nearly all the ARGs detected in the pristine soils were also detected in the farmlands. A random forest prediction showed that the overall patterns of ARGs clustered closely with the landuse type. Mantel test and partial redundancy analysis indicated that bacterial community variation is a major contributor to antibiotic resistome alteration. Significant positive correlation was found between the abundance of ARGs and mobile genetic elements (MGEs), suggesting potential mobility of ARGs in peri-urban areas. Our results extend knowledge of the resistomes compositions in peri-urban areas, and suggest that anthropogenic activities driving its spatial and temporal distribution.


Environmental Pollution | 2018

Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida

Dong Zhu; Qing-Fang Bi; Qian Xiang; Qing-Lin Chen; Peter Christie; Xin Ke; Longhua Wu; Yong-Guan Zhu

Although the roles of earthworms and soil collembolans in the transport of microplastics have been studied previously, the effects of the soil biota at different trophic levels and interspecific relationships remain poorly understood. Here, we examine three soil microarthropod species to explore their effects on the transport of microplastics. The selected Folsomia candida and Hypoaspis aculeifer are extensively used model organisms, and Damaeus exspinosus is a common and abundant indigenous species in China. A model food chain (prey-collembolan and predator-mite) was structured to test the role of the predator-prey relationship in the transport of microplastics. Commercial Polyvinyl chloride (PVC) particles (Diameter: 80-250 μm) were selected as the test microplastics, because large amounts of PVC have persisted and accumulated in the environment. Synchronized soil microarthropods were held in plates for seven days to determine the movement of microplastics. The 5000 microplastic particles were carefully placed in the center of each plate prior to the introduction of the animals. Our results clearly show that all three microarthropod species moved and dispersed the microplastics in the plates. The 0.54%, 1.8% and 4.6% of the added microplastic particles were moved by collembolan, predatory mite and oribatid mite, respectively. Soil microarthropods (<0.2 cm) transported microplastic particles up to 9 cm. The avoidance behavior was observed in the collembolans in respect of the microplastics. The predatory -prey relationship did promote the transport of microplastics in the plates, increasing transport by 40% compared with the effects of adding single species (P < .05). Soil microarthropods commonly occur in surface soils (0-5 cm) and, due to their small body size, they can enter soil pores. Our results therefore suggest that the movement of microplastics by soil microarthropods may influence the exposure of other soil biota to microplastics and change the physical properties of soils.


Applied and Environmental Microbiology | 2018

Impact of wastewater treatment on the prevalence of integrons and the genetic diversity of integron gene cassettes

Xin Li An; Qing-Lin Chen; Dong Zhu; Yong-Guan Zhu; Michael R. Gillings; Jian-Qiang Su

ABSTRACT The integron platform allows the acquisition, expression, and dissemination of antibiotic resistance genes within gene cassettes. Wastewater treatment plants (WWTPs) contain abundant resistance genes; however, knowledge about the impacts of wastewater treatment on integrons and their gene cassettes is limited. In this study, by using clone library analysis and high-throughput sequencing, we investigated the abundance of class 1, 2, and 3 integrons and their corresponding gene cassettes in three urban WWTPs. Our results showed that class 1 integrons were most abundant in WWTPs and that wastewater treatment significantly reduced the abundance of all integrons. The WWTP influents harbored the highest diversity of class 1 integron gene cassettes, whereas class 3 integron gene cassettes exhibited highest diversity in activated sludge. Most of the gene cassette arrays detected in class 1 integrons were novel. Aminoglycoside, beta-lactam, and trimethoprim resistance genes were highly prevalent in class 1 integron gene cassettes, while class 3 integrons mainly carried beta-lactam resistance gene cassettes. A core class 1 integron resistance gene cassette pool persisted during wastewater treatment, implying that these resistance genes could have high potential to spread into environments through WWTPs. These data provide new insights into the impact of wastewater treatment on integron pools and highlight the need for surveillance of resistance genes within both class 1 and 3 integrons. IMPORTANCE Wastewater treatment plants represent a significant sink and transport medium for antibiotic resistance bacteria and genes spreading into environments. Integrons are important genetic elements involved in the evolution of antibiotic resistance. To better understand the impact of wastewater treatment on integrons and their gene cassette contexts, we conducted clone library construction and high-throughput sequencing to analyze gene cassette contexts for class 1 and class 3 integrons during the wastewater treatment process. This study comprehensively profiled the distribution of integrons and their gene cassettes (especially class 3 integrons) in influents, activated sludge, and effluents of conventional municipal wastewater treatment plants. We further demonstrated that while wastewater treatment significantly reduced the abundance of integrons and the diversity of associated gene cassettes, a large fraction of integrons persisted in wastewater effluents and were consequentially discharged into downstream natural environments.


Pedosphere | 2017

Refinement of Methodology for Cadmium Determination in Soil Micro-Arthropod Tissues

Dong Zhu; Xin Ke; Longhua Wu; Yujuan Huang; Peter Christie; Yongming Luo

Highly precise and reliable determination of heavy metals in soil micro-arthropod tissues remains a challenge because of the small size of the animals and their typical low abundance in metal-contaminated agricultural soils. The present study sought to develop a method for cadmium (Cd) determination in soil micro-arthropods by optimizing the sample digestion procedure, reducing sample weight, modifying sample pre-treatment and validating the methodology with field samples. The optimized digestion conditions comprised a sample mass of 50-150 mu g, digestion reagent of nitric acid:hydrogen peroxide (3:1), digestion temperature of 105 degrees C, digestion period of 3 h and digestion volume of 30 mu L. Defecation of the standatd Collembola Folsomia candida (92 h) and the indigenous Collembola Onychiurus yodai (42 h) and ultrasonic cleaning of F. candida increased the accuracy of Cd determination. The recovery of Cd using the refined procedure was 98.9% and the limits of detection and quantification were 0.002 and 0.008 mu g L-1, respectively. The within-batch precision values were < 3%. The Cd concentrations in the tissues of the Collembola Isotoma sp. collected from a range of metal-contaminated fields determined by the improved method were consistent with the Cd concentrations in the field soils. The results indicate that the optimized method can be used for more accurate or reliable determination of Cd concentrations in soil micro-arthropod tissues.


Science of The Total Environment | 2018

Distinct effects of struvite and biochar amendment on the class 1 integron antibiotic resistance gene cassettes in phyllosphere and rhizosphere

Xin-Li An; Qing-Lin Chen; Dong Zhu; Jian-Qiang Su

Struvite recovered from wastewater is promising for recycling phosphorus into soil as fertilizers. However, struvite application may prompt the proliferation of antibiotic resistance in soil and plant. This study examined the impacts of struvite application and biochar amendment on integrons abundance and gene cassette contexts in rhizosphere soil and phyllosphere using quantitative PCR and clone library analysis. Microcosm experiments revealed that class 1 integron was the most prevalent in all samples, with higher concentration and higher relative abundance in rhizosphere than those in phyllosphere. The majority of resistance gene cassettes were associated with genes encoding resistance to aminoglycosides, beta-lactams and chloramphenicols. Struvite application significantly increased the genetic diversity of antibiotic resistance gene cassettes in both rhizosphere and phyllosphere. However, biochar amendment attenuated the increasing effect of struvite application exerting on the class 1 integron antibiotic resistance gene cassette pool in phyllosphere. These findings highlighted human activities to be the source of integron gene cassette pool and raised the possibility of using biochar amendment as an alternative mean for mitigating antibiotic resistance in environments.


Science of The Total Environment | 2018

Estimating cadmium availability to the hyperaccumulator Sedum plumbizincicola in a wide range of soil types using a piecewise function

Longhua Wu; Jiawen Zhou; Tong Zhou; Zhu Li; Jinping Jiang; Dong Zhu; Jinyu Hou; Zhaoyang Wang; Yongming Luo; Peter Christie

Estimating the bioavailability and predicting the uptake of metals to hyperaccumulators is very important in developing the field application of phytoextraction. A pot experiment was conducted using 108 agricultural soils covering a wide range of soil properties by the cadmium (Cd) hyperaccumulator Sedum plumbizincicola. The contributions of a range of soil properties to Cd uptake were quantified. Soil total, soluble, CaCl2-extractable and diffusive gradients in thin films (DGT)-extractable Cd concentrations (Cdtotal, Cdsoln, CdCaCl2 and CdDGT) were used to estimate Cd bioavailability and predict shoot Cd concentration (Cdshoot) using a piecewise function. Cdtotal and pH were the two major contributors to Cd uptake. Cdshoot showed a logarithmic increase with Cdtotal from 0.30 to 10.0 mg kg-1 but no further increase when Cd levels exceeded 10 mg kg-1. Soil pH had a discernible negative effect on Cd bioavailability from pH 5.5 to 7.5 but a weak influence at pH < 5.5 or pH > 7.5. This indicates that the optimum pH for phytoextraction with S. plumbizincicola was ~5.5 and lower pH produced little increase in shoot Cd uptake. DGT gave the best estimation of Cd bioavailability across all the data. When Cdtotal > 10 mg kg-1, none of the four measures was accurate enough to predict Cdshoot but when pH > 7.5 all the four measures were well correlated with Cdshoot. Piecewise equations in different ranges of Cdtotal or pH significantly improved the prediction of Cdshoot compared with the global equations derived from all the data. Compared with the piecewise equations, when pH > 7.5 Cdshoot was greatly overestimated with the global equation of Cdtotal. Our study provides useful information on the soils in which phytoextraction with S. plumbizincicola is feasible in the field. CAPSULE Cd availability to S. plumbizincicola was estimated by a piecewise function in soils with wide ranges of total Cd concentration and pH.


Environmental Science & Technology | 2018

Antibiotics Disturb the Microbiome and Increase the Incidence of Resistance Genes in the Gut of a Common Soil Collembolan

Dong Zhu; Xin-Li An; Qing-Lin Chen; Xiao-Ru Yang; Peter Christie; Xin Ke; Longhua Wu; Yong-Guan Zhu

Gut microbiota make an important contribution to host health but the effects of environmental pressures on the gut microbiota of soil fauna are largely uncharacterized. Here, we examine the effects of norfloxacin and oxytetracycline on the gut microbiome of the common soil collembolan Folsomia candida and concomitant changes in the incidence of antibiotic resistance genes (ARGs) in the gut and in growth of the collembolan. Exposure to 10 mg antibiotics kg-1 for 2 weeks significantly inhibited the growth of the collembolan with roughly a 10-fold decrease in 16S rRNA gene abundance. Antibiotics did alter the composition and structure of the collembolan gut microbiome and decreased the diversity of the gut bacteria. A decline in the firmicutes/bacteroidetes ratio in the antibiotic-treated collembolans may be responsible for the decrease in body weight. Exposure to antibiotics significantly increased the diversity and abundance of ARGs in the collembolan gut. The Mantel test and Procrustes analysis both reveal that ARGs and gut microbiota were significantly correlated with one another ( P < 0.05). These results indicate that antibiotics may induce a shift in the gut microbiota of nontarget organisms such as soil collembolans and thereby affect their growth and enrichment of ARGs.


Environmental Science & Technology | 2018

Exposure of a Soil Collembolan to Ag Nanoparticles and AgNO3 Disturbs its Associated Microbiota and Lowers the Incidence of Antibiotic Resistance Genes in the Gut

Dong Zhu; Fei Zheng; Qing-Lin Chen; Xiao-Ru Yang; Peter Christie; Xin Ke; Yong-Guan Zhu

Gut microbiota contribute to host health. Numerous recent studies have focused on the survival and reproduction of nontarget soil animals exposed to the toxicity of silver nanoparticles (AgNPs) but changes in the gut microbiota due to nanoparticle toxicity are largely unknown. Here, we examine some effects of AgNPs and silver nitrate (ionic Ag) on the gut microbiota of the common soil collembolan Folsomia candida using Illumina sequencing and concomitant changes in antibiotic resistance genes (ARGs) of the gut microbiota using high-throughput quantitative PCR. A large number of Ag accumulated in Ag-exposed individuals after 28 days and ionic Ag significantly inhibited the reproduction of the collembolan (by 19.3%). Exposure to AgNPs disturbed the composition of the collembolan gut bacterial community, resulting in dysbiosis of the gut microbiota. However, the dominant microbiota was shared among different treatments. In addition, AgNPs exposure did indeed reduce the incidence of ARGs in the collembolan gut microbiota. A weak relationship was identified between gut bacterial communities and ARG profiles. These results extend our knowledge regarding the role of the gut microbiota in assessing the soil ecotoxicology of AgNPs.


Environmental Pollution | 2018

Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus

Bo-Kai Zhu; Yi-Meng Fang; Dong Zhu; Peter Christie; Xin Ke; Yong-Guan Zhu

Microplastics are emerging pollutants that have recently aroused considerable concern but most toxicological studies have focused on marine biota, with little investigation of the influence of microplastics on terrestrial ecosystems. Here, we fed the soil oligochaete Enchytraeus crypticus with oatmeal containing 0, 0.025, 0.5, and 10% (dry weight basis) nano-polystyrene (0.05-0.1 μm particle size) to elucidate the impact of microplastics on the growth and gut microbiome of Enchytraeus crypticus. We observed a significant reduction of weight in the animals fed 10% polystyrene and an increase in the reproduction of those fed 0.025%. More importantly, using 16S rRNA amplification and high-throughput sequencing we found a significant shift in the microbiome of those fed 10% microplastics with significant decreases in the relative abundance of the families Rhizobiaceae, Xanthobacteraceae and Isosphaeraceae. These families contain key microbes that contribute to nitrogen cycling and organic matter decomposition.


Soil Biology & Biochemistry | 2018

Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition

Dong Zhu; Qing-Lin Chen; Xin-Li An; Xiao-Ru Yang; Peter Christie; Xin Ke; Longhua Wu; Yong-Guan Zhu

Collaboration


Dive into the Dong Zhu's collaboration.

Top Co-Authors

Avatar

Peter Christie

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Longhua Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xin Ke

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yong-Guan Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qing-Lin Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xin-Li An

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiao-Ru Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yongming Luo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jian-Qiang Su

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jinyu Hou

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge