Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dongcheng Zhang is active.

Publication


Featured researches published by Dongcheng Zhang.


Stem Cells | 2009

Small-Molecule Induction of Neural Crest-like Cells Derived from Human Neural Progenitors†‡§

Ryo Hotta; Lana Pepdjonovic; Richard B. Anderson; Dongcheng Zhang; Annette J. Bergner; Jessie Leung; Alice Pébay; Heather M. Young; Donald F. Newgreen; Mirella Dottori

Neural crest (NC) cells are stem cells that are specified within the embryonic neuroectodermal epithelium and migrate to stereotyped peripheral sites for differentiation into many cell types. Several neurocristopathies involve a deficit of NC‐derived cells, raising the possibility of stem cell therapy. In Hirschsprungs disease the distal bowel lacks an enteric nervous system caused by a failure of colonization by NC‐derived cells. We have developed a robust method of producing migrating NC‐like cells from human embryonic stem cell–derived neural progenitors using a coculture system of mouse embryonic fibroblasts. Significantly, subsequent exposure to Y27632, a small‐molecule inhibitor of the Rho effectors ROCKI/II, dramatically increased the efficiency of differentiation into NC‐like cells, identified by marker expression in vitro. NC‐like cells derived by this method were able to migrate along NC pathways in avian embryos in ovo and within explants of murine bowel, and to differentiate into cells with neuronal and glial markers. This is the first study to report the use of a small molecule to induce cells with NC characteristics from embryonic stem cells that can migrate and generate neurons and support cells in complex tissue. Furthermore, this study demonstrates that small‐molecule regulators of ROCKI/II signaling may be valuable tools for stem cell research aimed at treatment of neurocristopathies. STEM CELLS 2009;27:2896–2905


Developmental Biology | 2010

Neural crest regionalisation for enteric nervous system formation: Implications for Hirschsprung's disease and stem cell therapy

Dongcheng Zhang; Inigo Brinas; Benjamin J. Binder; Kerry A. Landman; Donald F. Newgreen

Midbrain, hindbrain and vagal neural crest (NC) produced abundant enteric nervous system (ENS) in co-grafted aneural hindgut and midgut, using chick-quail chorio-allantoic membrane grafts, forming complete myenteric and submucosal plexuses. This ability dropped suddenly in cervical and thoracic NC levels, furnishing an incomplete ENS in one or both plexuses. Typically, one plexus was favoured over the other. This deficiency was not caused by lower initial trunk NC number, yet overloading the initial number decreased the deficiency. No qualitative difference in neuronal and glial differentiation between cranial and trunk levels was observed. All levels formed HuC/D+ve, NOS+ve, ChAT+ve, and TH-ve enteric neurons with SoxE+ve, GFAP+ve, and BFABP+ve glial cells. We mathematically modelled a proliferative difference between NC populations, with a plexus preference hierarchy, in the context of intestinal growth. High proliferation achieved an outcome similar to cranial NC, while low proliferation described the trunk NC outcome of incomplete primary plexus and even more deficient secondary plexus. We conclude that cranial NC, relative to trunk NC, has a positionally-determined proliferation advantage favouring ENS formation. This has important implications for proposed NC stem cell therapy for Hirschsprungs disease, since such cells may need to be optimised for positional identity.


Journal of Theoretical Biology | 2011

On the role of differential adhesion in gangliogenesis in the enteric nervous system

Emily J. Hackett-Jones; Kerry A. Landman; Donald F. Newgreen; Dongcheng Zhang

A defining characteristic of the normal development of the enteric nervous system (ENS) is the existence of mesoscale patterned entities called ganglia. Ganglia are clusters of neurons with associated enteric neural crest (ENC) cells, which form in the simultaneously growing gut wall. At first the precursor ENC cells proliferate and gradually differentiate to produce the enteric neurons; these neurons form clusters with ENC scattered around and later lying on the periphery of neuronal clusters. By immunolabelling neural cell-cell adhesion molecules, we infer that the adhesive capacity of neurons is greater than that of ENC cells. Using a discrete mathematical model, we test the hypothesis that local rules governing differential adhesion of neuronal agents and ENC agents will produce clusters which emulate ganglia. The clusters are relatively stable, relatively uniform and small in size, of fairly uniform spacing, with a balance between the number of neuronal and ENC agents. These features are attained in both fixed and growing domains, reproducing respectively organotypic in vitro and in vivo observations. Various threshold criteria governing ENC agent proliferation and differentiation and neuronal agent inhibition of differentiation are important for sustaining these characteristics. This investigation suggests possible explanations for observations in normal and abnormal ENS development.


Birth Defects Research Part C-embryo Today-reviews | 2014

The neural crest: a versatile organ system.

Dongcheng Zhang; Samiramis Ighaniyan; Lefteris Stathopoulos; Benjamin N. Rollo; Kerry A. Landman; John M. Hutson; Donald F. Newgreen

The neural crest is the name given to the strip of cells at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos, which is later brought to the dorsal neural tube as the neural folds elevate. The neural crest is a heterogeneous and multipotent progenitor cell population whose cells undergo EMT then extensively and accurately migrate throughout the embryo. Neural crest cells contribute to nearly every organ system in the body, with derivatives of neuronal, glial, neuroendocrine, pigment, and also mesodermal lineages. This breadth of developmental capacity has led to the neural crest being termed the fourth germ layer. The neural crest has occupied a prominent place in developmental biology, due to its exaggerated migratory morphogenesis and its remarkably wide developmental potential. As such, neural crest cells have become an attractive model for developmental biologists for studying these processes. Problems in neural crest development cause a number of human syndromes and birth defects known collectively as neurocristopathies; these include Treacher Collins syndrome, Hirschsprung disease, and 22q11.2 deletion syndromes. Tumors in the neural crest lineage are also of clinical importance, including the aggressive melanoma and neuroblastoma types. These clinical aspects have drawn attention to the selection or creation of neural crest progenitor cells, particularly of human origin, for studying pathologies of the neural crest at the cellular level, and also for possible cell therapeutics. The versatility of the neural crest lends itself to interlinked research, spanning basic developmental biology, birth defect research, oncology, and stem/progenitor cell biology and therapy.


PLOS ONE | 2013

Retinoic acid upregulates ret and induces chain migration and population expansion in vagal neural crest cells to colonise the embryonic gut.

Johanna E. Simkin; Dongcheng Zhang; Benjamin N. Rollo; Donald F. Newgreen

Vagal neural crest cells (VNCCs) arise in the hindbrain, and at (avian) embryonic day (E) 1.5 commence migration through paraxial tissues to reach the foregut as chains of cells 1–2 days later. They then colonise the rest of the gut in a rostrocaudal wave. The chains of migrating cells later resolve into the ganglia of the enteric nervous system. In organ culture, E4.5 VNCCs resident in the gut (termed enteric or ENCC) which have previously encountered vagal paraxial tissues, rapidly colonised aneural gut tissue in large numbers as chains of cells. Within the same timeframe, E1.5 VNCCs not previously exposed to paraxial tissues provided very few cells that entered the gut mesenchyme, and these never formed chains, despite their ability to migrate in paraxial tissue and in conventional cell culture. Exposing VNCCs in vitro to paraxial tissue normally encountered en route to the foregut conferred enteric migratory ability. VNCC after passage through paraxial tissue developed elements of retinoic acid signalling such as Retinoic Acid Binding Protein 1 expression. The paraxial tissues ability to promote gut colonisation was reproduced by the addition of retinoic acid, or the synthetic retinoid Am80, to VNCCs (but not to trunk NCCs) in organ culture. The retinoic acid receptor antagonist CD 2665 strongly reduced enteric colonisation by E1.5 VNCC and E4.5 ENCCs, at a concentration suggesting RARα signalling. By FACS analysis, retinoic acid application to vagal neural tube and NCCs in vitro upregulated Ret; a Glial-derived-neurotrophic-factor receptor expressed by ENCCs which is necessary for normal enteric colonisation. This shows that early VNCC, although migratory, are incapable of migrating in appropriate chains in gut mesenchyme, but can be primed for this by retinoic acid. This is the first instance of the characteristic form of NCC migration, chain migration, being attributed to the application of a morphogen.


Biomaterials | 2013

Non-linear elasticity of core/shell spun PGS/PLLA fibres and their effect on cell proliferation

Bing Xu; Ben Rollo; Lincon A. Stamp; Dongcheng Zhang; Xi-Ya Fang; Donald F. Newgreen; Qizhi Chen

An efficient delivery system is critical for the success of cell therapy. To deliver cells to a dynamic organ, the biomaterial vehicle should mechanically match with the non-linearly elastic host tissue. In this study, non-linearly elastic biomaterials have been fabricated from a chemically crosslinked elastomeric poly(glycerol sebacate) (PGS) and thermoplastic poly(l-lactic acid) (PLLA) using the core/shell electrospinning technique. The spun fibrous materials containing a PGS core and PLLA shell demonstrate J-shaped stress-strain curves, having ultimate tensile strength (UTS), rupture elongation and stiffness constants of 1 ± 0.2 MPa, 25 ± 3% and 12 ± 2, respectively, which are comparable to skin tissue properties reported previously. Our ex vivo and in vivo trials have shown that the elastomeric mesh supports and fosters the growth of enteric neural crest (ENC) progenitor cells, and that the cell-seeded elastomeric fibrous sheet physically remains in intimate contact with guts after grafting, providing the effective delivery of the progenitor cells to an embryonic and post-natal gut environment.


Journal of Theoretical Biology | 2011

Building stable chains with motile agents: Insights into the morphology of enteric neural crest cell migration

Kerry A. Landman; Anthony E. Fernando; Dongcheng Zhang; Donald F. Newgreen

A defining characteristic of the normal development of the enteric nervous system (ENS) is the existence of an enteric neural crest (ENC) cell colonization wave, where the ENC cells form stable chains often associated with axons and near the vascular network. However, within this evolving neural network, the individual ENC cell elements constantly move, change direction and appear to act independently of neighbors. Three possible hypotheses are investigated. The simplest of these postulates that the ENS follows the vascular network as a template. We present evidence which does not support this hypothesis. Two viable alternatives are either that (i) the axons muster the ENC cells, providing the pattern for the chain migration or (ii) ENC cells form chains and the axons follow these paths. These two hypotheses are explored by developing a stochastic cellular automata model, where ENC agents follow simple rules, which reflect the underlying biology of movement, proliferation and differentiation. By simulating ENC precursors and the associated neurons and axons, two models with different fundamental mechanisms are developed. From local rules, a mesoscale network pattern with lacunae emerges, which can be analyzed quantitatively. Simulation and analysis establishes the parameters that affect the morphology of the resulting network. This investigation into the axon/ENC and ENC/ENC interplay suggests possible explanations for observations in mouse and avian embryos in normal and abnormal ENS development, as well as further experimentation.


Stem Cells | 2015

Multipotent Caudal Neural Progenitors Derived from Human Pluripotent Stem Cells That Give Rise to Lineages of the Central and Peripheral Nervous System

Kouichi Hasegawa; Trevelyan R. Menheniott; Benjamin N. Rollo; Dongcheng Zhang; Shelley R. Hough; Abdullah J. Alshawaf; Fabia Febbraro; Samiramis Ighaniyan; Jessie Leung; David A. Elliott; Donald F. Newgreen; Martin F. Pera; Mirella Dottori

The caudal neural plate is a distinct region of the embryo that gives rise to major progenitor lineages of the developing central and peripheral nervous system, including neural crest and floor plate cells. We show that dual inhibition of the glycogen synthase kinase 3β and activin/nodal pathways by small molecules differentiate human pluripotent stem cells (hPSCs) directly into a preneuroepithelial progenitor population we named “caudal neural progenitors” (CNPs). CNPs coexpress caudal neural plate and mesoderm markers, and, share high similarities to embryonic caudal neural plate cells in their lineage differentiation potential. Exposure of CNPs to BMP2/4, sonic hedgehog, or FGF2 signaling efficiently directs their fate to neural crest/roof plate cells, floor plate cells, and caudally specified neuroepithelial cells, respectively. Neural crest derived from CNPs differentiated to neural crest derivatives and demonstrated extensive migratory properties in vivo. Importantly, we also determined the key extrinsic factors specifying CNPs from human embryonic stem cell include FGF8, canonical WNT, and IGF1. Our studies are the first to identify a multipotent neural progenitor derived from hPSCs, that is the precursor for major neural lineages of the embryonic caudal neural tube. Stem Cells 2015;33:1759–1770


Journal of the Royal Society Interface | 2014

Cell lineage tracing in the developing enteric nervous system: superstars revealed by experiment and simulation

Bevan L. Cheeseman; Dongcheng Zhang; Benjamin J. Binder; Donald F. Newgreen; Kerry A. Landman

Cell lineage tracing is a powerful tool for understanding how proliferation and differentiation of individual cells contribute to population behaviour. In the developing enteric nervous system (ENS), enteric neural crest (ENC) cells move and undergo massive population expansion by cell division within self-growing mesenchymal tissue. We show that single ENC cells labelled to follow clonality in the intestine reveal extraordinary and unpredictable variation in number and position of descendant cells, even though ENS development is highly predictable at the population level. We use an agent-based model to simulate ENC colonization and obtain agent lineage tracing data, which we analyse using econometric data analysis tools. In all realizations, a small proportion of identical initial agents accounts for a substantial proportion of the total final agent population. We term these individuals superstars. Their existence is consistent across individual realizations and is robust to changes in model parameters. This inequality of outcome is amplified at elevated proliferation rate. The experiments and model suggest that stochastic competition for resources is an important concept when understanding biological processes which feature high levels of cell proliferation. The results have implications for cell-fate processes in the ENS.


Cellular and molecular gastroenterology and hepatology | 2016

Enteric Neural Cells From Hirschsprung Disease Patients Form Ganglia in Autologous Aneuronal Colon

Benjamin N. Rollo; Dongcheng Zhang; Lincon A. Stamp; Trevelyan R. Menheniott; Lefteris Stathopoulos; Mirella Dottori; Sebastian K. King; John M. Hutson; Donald F. Newgreen

Background & Aims Hirschsprung disease (HSCR) is caused by failure of cells derived from the neural crest (NC) to colonize the distal bowel in early embryogenesis, resulting in absence of the enteric nervous system (ENS) and failure of intestinal transit postnatally. Treatment is by distal bowel resection, but neural cell replacement may be an alternative. We tested whether aneuronal (aganglionic) colon tissue from patients may be colonized by autologous ENS-derived cells. Methods Cells were obtained and cryopreserved from 31 HSCR patients from the proximal resection margin of colon, and ENS cells were isolated using flow cytometry for the NC marker p75 (nine patients). Aneuronal colon tissue was obtained from the distal resection margin (23 patients). ENS cells were assessed for NC markers immunohistologically and by quantitative reverse-transcription polymerase chain reaction, and mitosis was detected by ethynyl-2′-deoxyuridine labeling. The ability of human HSCR postnatal ENS-derived cells to colonize the embryonic intestine was demonstrated by organ coculture with avian embryo gut, and the ability of human postnatal HSCR aneuronal colon muscle to support ENS formation was tested by organ coculture with embryonic mouse ENS cells. Finally, the ability of HSCR patient ENS cells to colonize autologous aneuronal colon muscle tissue was assessed. Results ENS-derived p75-sorted cells from patients expressed multiple NC progenitor and differentiation markers and proliferated in culture under conditions simulating Wnt signaling. In organ culture, patient ENS cells migrated appropriately in aneural quail embryo gut, and mouse embryo ENS cells rapidly spread, differentiated, and extended axons in patient aneuronal colon muscle tissue. Postnatal ENS cells derived from HSCR patients colonized autologous aneuronal colon tissue in cocultures, proliferating and differentiating as neurons and glia. Conclusions NC-lineage cells can be obtained from HSCR patient colon and can form ENS-like structures in aneuronal colonic muscle from the same patient.

Collaboration


Dive into the Dongcheng Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessie Leung

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

John M. Hutson

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge