Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dongchuan Shi is active.

Publication


Featured researches published by Dongchuan Shi.


ACS Medicinal Chemistry Letters | 2010

Novel N-Substituted Benzimidazolones as Potent, Selective, CNS-Penetrant, and Orally Active M1 mAChR Agonists

Brian Budzik; Vincenzo Garzya; Dongchuan Shi; Graham Walker; Marie Woolley-Roberts; Joanne Pardoe; Adam Lucas; Ben Tehan; Ralph A. Rivero; Christopher J. Langmead; Jeannette M. Watson; Zining Wu; Ian Thomson Forbes; Jian Jin

Virtual screening of the corporate compound collection yielded compound 1 as a subtype selective muscarinic M1 receptor agonist hit. Initial optimization of the N-capping group of the central piperidine ring resulted in compounds 2 and 3 with significantly improved potency and selectivity. Subsequent optimization of substituents on the phenyl ring of the benzimidazolone moiety led to the discovery of novel muscarinic M1 receptor agonists 4 and 5 with excellent potency, general and subtype selectivity, and pharmacokinetic (PK) properties including good central nervous system (CNS) penetration and oral bioavailability. Compound 5 showed robust in vivo activities in animal models of cognition enhancement. The combination of high potency, excellent selectivity, and good PK properties makes compounds 4 and 5 valuable tool compounds for investigating and validating potential therapeutic benefits resulting from selective M1 activation.


Bioorganic & Medicinal Chemistry Letters | 2010

2' Biaryl amides as novel and subtype selective M1 agonists. Part II: Further optimization and profiling

Brian Budzik; Vincenzo Garzya; Dongchuan Shi; Graham Walker; Yann Lauchart; Adam Lucas; Ralph A. Rivero; Christopher J. Langmead; Jeannette M. Watson; Zining Wu; Ian Thomson Forbes; Jian Jin

Further optimization of the biaryl amide series via extensively exploring structure-activity relationships resulted in potent and subtype selective M(1) agonists exemplified by compounds 9a and 9j with good rat PK properties including CNS penetration. Synthesis, structure-activity relationships, subtype selectivity for M(1) over M(2-5), and DMPK properties of these novel compounds are described.


Journal of Medicinal Chemistry | 2008

Discovery of biphenyl piperazines as novel and long acting muscarinic acetylcholine receptor antagonists.

Jian Jin; Brian Budzik; Yonghui Wang; Dongchuan Shi; Feng Wang; Haibo Xie; Zehong Wan; Chongye Zhu; James J. Foley; Edward F. Webb; Manuela Berlanga; Miriam Burman; Henry M. Sarau; Dwight M. Morrow; Michael L. Moore; Ralph A. Rivero; Michael R. Palovich; Michael Salmon; Kristen E. Belmonte; Dramane I. Laine

A series of novel biphenyl piperazines was discovered as highly potent muscarinic acetylcholine receptor antagonists via high throughput screening and subsequent optimization. Compound 5c with respective 500- and 20-fold subtype selectivity for M3 over M2 and M1 exhibited excellent inhibitory activity and long duration of action in a bronchoconstriction in vivo model in mice via intranasal administration. The novel inhaled mAChR antagonists are potentially useful therapeutic agents for the treatment of chronic obstructive pulmonary disease.


Bioorganic & Medicinal Chemistry Letters | 2008

2-Aminomethyl piperidines as novel urotensin-II receptor antagonists.

Jian Jin; Yonghui Wang; Feng Wang; Dongchuan Shi; Karl F. Erhard; Zining Wu; Brian Guida; Sarah K. Lawrence; David J. Behm; Jyoti Disa; Kalindi Vaidya; Christopher Evans; Lynette J. McMillan; Ralph A. Rivero; Michael J. Neeb; Stephen A. Douglas

A series of 2-aminomethyl piperidines has been discovered as novel urotensin-II receptor antagonists. The synthesis, initial structure-activity relationships, and optimization of the initial hit that resulted in the identification of potent, cross-species active, and functional urotensin-II receptor antagonists such as 1a and 11a are described.


ACS Medicinal Chemistry Letters | 2010

Novel 3-Oxazolidinedione-6-aryl-pyridinones as Potent, Selective, and Orally Active EP3 Receptor Antagonists.

Jian Jin; Ángel I. Morales-Ramos; Patrick M. Eidam; John S. Mecom; Yue Li; Carl Brooks; Mark A. Hilfiker; David Zhang; Ning Wang; Dongchuan Shi; Pei-San Tseng; Karen Wheless; Brian Budzik; Karen A. Evans; Jon-Paul Jaworski; Jack Jugus; Lisa A. Leon; Charlene Wu; Mark Pullen; Bhumika Karamshi; Parvathi Rao; Emma Ward; Nicholas J. Laping; Christopher Evans; Colin Leach; Dennis A. Holt; Xin Su; Dwight M. Morrow; Harvey E. Fries; Kevin S. Thorneloe

High-throughput screening and subsequent optimization led to the discovery of novel 3-oxazolidinedione-6-aryl-pyridinones exemplified by compound 2 as potent and selective EP3 antagonists with excellent pharmacokinetic properties. Compound 2 was orally active and showed robust in vivo activities in overactive bladder models. To address potential bioactivation liabilities of compound 2, further optimization resulted in compounds 9 and 10, which maintained excellent potency, selectivity, and pharmacokinetic properties and showed no bioactivation liability in glutathione trapping studies. These highly potent, selective, and orally active EP3 antagonists are excellent tool compounds for investigating and validating potential therapeutic benefits from selectively inhibiting the EP3 receptor.


Bioorganic & Medicinal Chemistry Letters | 2010

2′ Biaryl amides as novel and subtype selective M1 agonists. Part I: Identification, synthesis, and initial SAR

Brian Budzik; Vincenzo Garzya; Dongchuan Shi; James J. Foley; Ralph A. Rivero; Christopher J. Langmead; Jeannette M. Watson; Zining Wu; Ian Thomson Forbes; Jian Jin

Biaryl amides were discovered as novel and subtype selective M(1) muscarinic acetylcholine receptor agonists. The identification, synthesis, and initial structure-activity relationships that led to compounds 3j and 4c, possessing good M(1) agonist potency and intrinsic activity, and subtype selectivity for M(1) over M(2-5), are described.


Journal of Medicinal Chemistry | 2008

Discovery of novel and long acting muscarinic acetylcholine receptor antagonists.

Jian Jin; Yonghui Wang; Dongchuan Shi; Feng Wang; Roderick S. Davis; Qi Jin; Wei Fu; James J. Foley; Edward F. Webb; Chris J. Dehaas; Manuela Berlanga; Miriam Burman; Henry M. Sarau; Dwight M. Morrow; Parvathi Rao; Lorena A. Kallal; Michael L. Moore; Ralph A. Rivero; Michael R. Palovich; Michael Salmon; Kristen E. Belmonte; Jakob Busch-Petersen

High throughput screening and subsequent optimization led to the discovery of novel quaternary ammonium salts as highly potent muscarinic acetylcholine receptor antagonists with excellent selectivity. Compounds 8a, 13a, and 13b showed excellent inhibitory activity and long duration of action in bronchoconstriction in vivo models in two species via intranasal or intratracheal administration. The novel inhaled muscarinic receptor antagonists are potentially useful therapeutic agents for the treatment of chronic obstructive pulmonary disease and other bronchoconstriction disorders.


Bioorganic & Medicinal Chemistry Letters | 2011

Phenoxyacetic acids as PPARδ partial agonists: Synthesis, optimization, and in vivo efficacy

Karen A. Evans; Barry G. Shearer; David D. Wisnoski; Dongchuan Shi; Steven M. Sparks; Daniel D. Sternbach; Deborah A. Winegar; Andrew N. Billin; Christy S. Britt; James M. Way; Andrea H. Epperly; Lisa M. Leesnitzer; Robert X. Xu; Millard H. Lambert; Jian Jin

A series of phenoxyacetic acids as subtype selective and potent hPPARδ partial agonists is described. Many analogues were readily accessible via a single solution-phase synthetic route which resulted in the rapid identification of key structure-activity relationships (SAR), and the discovery of two potent exemplars which were further evaluated in vivo. Details of the SAR, optimization, and in vivo efficacy of this series are presented herein.


Bioorganic & Medicinal Chemistry Letters | 2008

Potent and selective small-molecule human urotensin-II antagonists with improved pharmacokinetic profiles.

John J. McAtee; Jason W. Dodson; Sarah E. Dowdell; Karl F. Erhard; Gerald R. Girard; Krista B. Goodman; Mark A. Hilfiker; Jian Jin; Clark A. Sehon; Deyou Sha; Dongchuan Shi; Feng Wang; Gren Z. Wang; Ning Wang; Yonghui Wang; Andrew Q. Viet; Catherine C.K. Yuan; Daohua Zhang; Nambi Aiyar; David J. Behm; Luz H. Carballo; Christopher Evans; Harvey E. Fries; Rakesh Nagilla; Theresa J. Roethke; Xiaoping Xu; Stephen A. Douglas; Michael J. Neeb

Lead compound 1 was successfully redesigned to provide compounds with improved pharmacokinetic profiles for this series of human urotensin-II antagonists. Replacement of the 2-pyrrolidinylmethyl-3-phenyl-piperidine core of 1 with a substituted N-methyl-2-(1-pyrrolidinyl)ethanamine core as in compound 7 resulted in compounds with improved oral bioavailability in rats. The relationship between stereochemistry and selectivity for hUT over the kappa-opioid receptor was also explored.


Bioorganic & Medicinal Chemistry Letters | 2011

Structure-activity relationship studies of novel 3-oxazolidinedione-6-naphthyl-2-pyridinones as potent and orally bioavailable EP3 receptor antagonists.

Ángel I. Morales-Ramos; Yue H. Li; Mark A. Hilfiker; John S. Mecom; Patrick M. Eidam; Dongchuan Shi; Pei-San Tseng; Carl Brooks; David Zhang; Ning Wang; Jon-Paul Jaworski; Dwight M. Morrow; Harvey E. Fries; Richard M. Edwards; Jian Jin

Multiple regions of the 3-oxazolidinedione-6-naphthyl-pyridinone series identified via high throughput screening were explored. SAR studies of these regions including the left-hand side oxazolidinedione moiety, α-substituent on the oxazolidinedione ring, central pyridinone core, and substituents on the central pyridinone core led to the discovery of potent EP(3) receptor antagonists such as compound 29 which possesses outstanding rat pharmacokinetic properties. Synthesis and SAR of these novel compounds and DMPK properties of representative compounds are discussed.

Collaboration


Dive into the Dongchuan Shi's collaboration.

Top Co-Authors

Avatar

Jian Jin

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge