Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dongfa Sun is active.

Publication


Featured researches published by Dongfa Sun.


Molecular & Cellular Proteomics | 2014

Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress

Dongwen Lv; Saminathan Subburaj; Min Cao; Xing Yan; Xiaohui Li; R. Appels; Dongfa Sun; Wujun Ma; Yueming Yan

Salinity is a major abiotic stress affecting plant growth and development. Understanding the molecular mechanisms of salt response and defense in plants will help in efforts to improve the salt tolerance of crops. Brachypodium distachyon is a new model plant for wheat, barley, and several potential biofuel grasses. In the current study, proteome and phosphoproteome changes induced by salt stress were the focus. The Bd21 leaves were initially treated with salt in concentrations ranging from 80 to 320 mm and then underwent a recovery process prior to proteome analysis. A total of 80 differentially expressed protein spots corresponding to 60 unique proteins were identified. The sample treated with a median salt level of 240 mm and the control were selected for phosphopeptide purification using TiO2 microcolumns and LC-MS/MS for phosphoproteome analysis to identify the phosphorylation sites and phosphoproteins. A total of 1509 phosphoproteins and 2839 phosphorylation sites were identified. Among them, 468 phosphoproteins containing 496 phosphorylation sites demonstrated significant changes at the phosphorylation level. Nine phosphorylation motifs were extracted from the 496 phosphorylation sites. Of the 60 unique differentially expressed proteins, 14 were also identified as phosphoproteins. Many proteins and phosphoproteins, as well as potential signal pathways associated with salt response and defense, were found, including three 14-3-3s (GF14A, GF14B, and 14-3-3A) for signal transduction and several ABA signal-associated proteins such as ABF2, TRAB1, and SAPK8. Finally, a schematic salt response and defense mechanism in B. distachyon was proposed.


PLOS ONE | 2011

Genetic variation of HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley.

Dezhi Wu; Long Qiu; Lulu Xu; Lingzhen Ye; Mingxian Chen; Dongfa Sun; Zhong-Hua Chen; Haitao Zhang; Xiaoli Jin; Fei Dai; Guoping Zhang

The evaluation of both the genetic variation and the identification of salinity tolerant accessions of Tibetan annual wild barley (hereafter referred to as Tibetan barley) (Hordeum vulgare L. ssp. Spontaneum and H. vulgare L. ssp. agriocrithum) are essential for discovering and exploiting novel alleles involved in salinity tolerance. In this study, we examined tissue dry biomass and the Na+ and K+ contents of 188 Tibetan barley accessions in response to salt stress. We investigated the genetic variation of transcription factors HvCBF1, HvCBF3 and HvCBF4 within these accessions, conducting association analysis between these three genes and the respective genotypic salt tolerance. Salt stress significantly reduced shoot and root dry weight by 27.6% to 73.1% in the Tibetan barley lines. HvCBF1, HvCBF3 and HvCBF4 showed diverse sequence variation in amplicon as evident by the identification of single nucleotide polymorphisms (SNPs) and 3, 8 and 13 haplotypes, respectively. Furthermore, the decay of Linkage disequilibrium (LD) of chromosome 5 was 8.9 cM (r2<0.1). Marker bpb-4891 and haplotype 13 (Ps 610) of the HvCBF4 gene were significantly (P<0.05) and highly significantly (P<0.001) associated with salt tolerance. However, HvCBF1 and HvCBF3 genes were not associated with salinity tolerance. The accessions from haplotype 13 of the HvCBF4 gene showed high salinity tolerance, maintaining significantly lower Na+/K+ ratios and higher dry weight. It is thus proposed that these Tibetan barley accessions could be of value for enhancing salinity tolerance in cultivated barley.


Evolution | 2012

Phylogenetic analyses unravel the evolutionary history of NAC proteins in plants.

Tingting Zhu; Eviatar Nevo; Dongfa Sun; Junhua Peng

NAC (NAM/ATAF/CUC) proteins are one of the largest groups of transcription factors in plants. Although many NAC proteins based on Arabidopsis and rice genomes have been reported in a number of species, a complete survey and classification of all NAC genes in plant species from disparate evolutionary groups is lacking. In this study, we analyzed whole‐genome sequences from nine major lineages of land plants to unveil the relationships between these proteins. Our results show that there are fewer than 30 NAC proteins present in both mosses and lycophytes, whereas more than 100 were found in most of the angiosperms. Phylogenetic analyses suggest that NAC proteins consist of 21 subfamilies, most of which have highly conserved non‐NAC domain motifs. Six of these subfamilies existed in early‐diverged land plants, whereas the remainder diverged only within the angiosperms. We hypothesize that NAC proteins probably originated sometime more than 400 million years ago and expanded together with the differentiation of plants into organisms of increasing complexity possibly after the divergence of lycophytes from the other vascular plants.


International Journal of Molecular Sciences | 2013

Genetic Diversity Revealed by Single Nucleotide Polymorphism Markers in a Worldwide Germplasm Collection of Durum Wheat

Jing Ren; Daokun Sun; Liang Chen; Frank M. You; Ji-Rui Wang; Yunliang Peng; Eviatar Nevo; Dongfa Sun; Ming-Cheng Luo; Junhua Peng

Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity.


PLOS ONE | 2011

Distinct origin of the Y and St genome in Elymus species: evidence from the analysis of a large sample of St genome species using two nuclear genes.

Chi Yan; Genlou Sun; Dongfa Sun

Background Previous cytological and single copy nuclear genes data suggested the St and Y genome in the StY-genomic Elymus species originated from different donors: the St from a diploid species in Pseudoroegneria and the Y from an unknown diploid species, which are now extinct or undiscovered. However, ITS data suggested that the Y and St genome shared the same progenitor although rather few St genome species were studied. In a recent analysis of many samples of St genome species Pseudoroegneria spicata (Pursh) À. Löve suggested that one accession of P. spicata species was the most likely donor of the Y genome. The present study tested whether intraspecific variation during sampling could affect the outcome of analyses to determining the origin of Y genome in allotetraploid StY species. We also explored the evolutionary dynamics of these species. Methodology/Principal Findings Two single copy nuclear genes, the second largest subunit of RNA polymerase II (RPB2) and the translation elongation factor G (EF-G) sequences from 58 accessions of Pseudoroegneria and Elymus species, together with those from Hordeum (H), Agropyron (P), Australopyrum (W), Lophopyrum (Ee), Thinopyrum (Ea), Thinopyrum (Eb), and Dasypyrum (V) were analyzed using maximum parsimony, maximum likelihood and Bayesian methods. Sequence comparisons among all these genomes revealed that the St and Y genomes are relatively dissimilar. Extensive sequence variations have been detected not only between the sequences from St and Y genome, but also among the sequences from diploid St genome species. Phylogenetic analyses separated the Y sequences from the St sequences. Conclusions/Significance Our results confirmed that St and Y genome in Elymus species have originated from different donors, and demonstrated that intraspecific variation does not affect the identification of genome origin in polyploids. Moreover, sequence data showed evidence to support the suggestion of the genome convergent evolution in allopolyploid StY genome species.


PLOS ONE | 2013

Genetic diversity and population structure of Miscanthus sinensis germplasm in China.

Hua Zhao; Bo Wang; Junrong He; Junpin Yang; Lei Pan; Dongfa Sun; Junhua Peng

Miscanthus is a perennial rhizomatous C4 grass native to East Asia. Endowed with great biomass yield, high ligno-cellulose composition, efficient use of radiation, nutrient and water, as well as tolerance to stress, Miscanthus has great potential as an excellent bioenergy crop. Despite of the high potential for biomass production of the allotriploid hybrid M. ×giganteus, derived from M. sacchariflorus and M. sinensis, other options need to be explored to improve the narrow genetic base of M. ×giganteus, and also to exploit other Miscanthus species, including M. sinensis (2n = 2x = 38), as bioenergy crops. In the present study, a large number of 459 M. sinensis accessions, collected from the wide geographical distribution regions in China, were genotyped using 23 SSR markers transferable from Brachypodium distachyon. Genetic diversity and population structure were assessed. High genetic diversity and differentiation of the germplasm were observed, with 115 alleles in total, a polymorphic rate of 0.77, Nei’s genetic diversity index (He) of 0.32 and polymorphism information content (PIC) of 0.26. Clustering of germplasm accessions was primarily in agreement with the natural geographic distribution. AMOVA and genetic distance analyses confirmed the genetic differentiation in the M. sinensis germplasm and it was grouped into five clusters or subpopulations. Significant genetic variation among subpopulations indicated obvious genetic differentiation in the collections, but within-subpopulation variation (83%) was substantially greater than the between-subpopulation variation (17%). Considerable phenotypic variation was observed for multiple traits among 300 M. sinensis accessions. Nine SSR markers were found to be associated with heading date and biomass yield. The diverse Chinese M. sinensis germplasm and newly identified SSR markers were proved to be valuable for breeding Miscanthus varieties with desired bioenergy traits.


BMC Evolutionary Biology | 2013

SNP-revealed genetic diversity in wild emmer wheat correlates with ecological factors

Jing Ren; Liang Chen; Daokun Sun; Frank M. You; Ji-Rui Wang; Yunliang Peng; Eviatar Nevo; Avigdor Beiles; Dongfa Sun; Ming-Cheng Luo; Junhua Peng

BackgroundPatterns of genetic diversity between and within natural plant populations and their driving forces are of great interest in evolutionary biology. However, few studies have been performed on the genetic structure and population divergence in wild emmer wheat using a large number of EST-related single nucleotide polymorphism (SNP) markers.ResultsIn the present study, twenty-five natural wild emmer wheat populations representing a wide range of ecological conditions in Israel and Turkey were used. Genetic diversity and genetic structure were investigated using over 1,000 SNP markers. A moderate level of genetic diversity was detected due to the biallelic property of SNP markers. Clustering based on Bayesian model showed that grouping pattern is related to the geographical distribution of the wild emmer wheat. However, genetic differentiation between populations was not necessarily dependent on the geographical distances. A total of 33 outlier loci under positive selection were identified using a FST-outlier method. Significant correlations between loci and ecogeographical factors were observed.ConclusionsNatural selection appears to play a major role in generating adaptive structures in wild emmer wheat. SNP markers are appropriate for detecting selectively-channeled adaptive genetic diversity in natural populations of wild emmer wheat. This adaptive genetic diversity is significantly associated with ecological factors.


Cereal Research Communications | 2013

Gene Discovery in Triticum dicoccoides, the Direct Progenitor of Cultivated Wheats

Junhua Peng; Dongfa Sun; Yunliang Peng; Eviatar Nevo

Triticum dicoccoides, wild emmer wheat, is the direct progenitor of cultivated wheats, has the same genome formula as durum wheat, and has contributed two genomes to bread wheat. It harbors many useful genes, more than can be used for wheat improvement. These genes are associated with many agronomic traits, abiotic stress tolerances, biotic stress resistances, grain protein content and micronutrient mineral concentrations. In this review, we summarized the achievements regarding gene discovery, i.e. gene identification, mapping and cloning in wild emmer wheat. These genes, controlling important agronomic traits, disease resistance, drought tolerance, high protein content and micronutrient mineral content, should be very useful for improvement of wheat production and food nutrition. However, the majority of genetic resources in wild emmer remain untapped, demonstrating the need for further exploration and utilization for wheat breeding programs. The large number of molecular markers, genomics tools and efficient cloning techniques available for wheat will greatly accelerate the application of wild emmer germplasm to wheat improvement and ensure sustainability of global wheat production.


Plant Molecular Biology Reporter | 2013

Physiological and Molecular Responses to Salt Stress in Wild Emmer and Cultivated Wheat

Liang Chen; Jing Ren; Haiyan Shi; Xiaodong Chen; Miaomiao Zhang; Yue Pan; Jibiao Fan; Eviatar Nevo; Dongfa Sun; Jinming Fu; Junhua Peng

Salinity severely influences growth and grain yield of wheat. Modern breeding efforts have contributed to severe loss of genetic diversity and reduced tolerance to salt stress in cultivated plants. Wild emmer wheat (Triticum dicoccoides), the progenitor of cultivated wheat, is well-adapted to a wide range of environments and exhibits tolerance to abiotic stress. However, there is lack of fundamental knowledge of the mechanism of salt stress tolerance in wild emmer wheat and how it differs from that of the cultivated wheat. By screening wild emmer genotypes, we identified a promising salt-tolerant line from Gitit in the eastern Samaria steppes. We investigated the physiological difference of wild emmer and cultivated wheats in response to salt stress. Our results revealed that salt stress resulted in an increase in lipid peroxidation (malondialdehyde) content and electrolyte leakage, to a greater extent in cultivated wheat genotype, Zheng 9023, than in salt-resistant wild emmer wheat genotype 18-35, but the latter had higher relative dry weight. Differential expression analysis showed that higher transcript induction folds of genes encoding transcription factor were detected in the resistant plants (wild emmer) than in sensitive plants (cultivated wheat) after salt treatment. In conclusion, wild emmer wheat demonstrated better tolerance to salt stress than cultivated wheat, and the higher tolerance of wild emmer wheat is because of high expression of stress-responsive genes encoding transcription factor, including NAC2F, NAC8, DREB3A, MYB3R, and MYB2A. Therefore, our results suggest that wild emmer wheat is an important germplasm for salt tolerance breeding in cultivated wheat.


PLOS ONE | 2013

Tibet as a Potential Domestication Center of Cultivated Barley of China

Xifeng Ren; Eviatar Nevo; Dongfa Sun; Genlou Sun

The importance of wild barley from Qinghai-Tibet Plateau in the origin and domestication of cultivated barley has long been underestimated. Population-based phylogenetic analyses were performed to study the origin and genetic diversity of Chinese domesticated barley, and address the possibility that the Tibetan region in China was an independent center of barley domestication. Wild barley (Hordeum vulgare ssp. spontaneum) populations from Southwest Asia, Central Asia, and Tibet along with domesticated barley from China were analyzed using two nuclear genes. Our results showed that Tibetan wild barley distinctly diverged from Southwest Asian (Near East) wild barley, that Central Asian wild barley is related to Southwest Asian wild barley, and that Chinese domesticated barley shares the same haplotypes with Tibetan wild barley. Phylogenetic analysis showed a close relationship between Chinese domesticated barley and the Tibetan wild barley, suggesting that Tibetan wild barley was the ancestor of Chinese domesticated barley. Our results favor the polyphyletic origin for cultivated barley.

Collaboration


Dive into the Dongfa Sun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junhua Peng

Guangdong Ocean University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Genlou Sun

Saint Mary's University

View shared research outputs
Top Co-Authors

Avatar

Xifeng Ren

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jing Ren

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanchun Peng

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge