Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dongguang Wei is active.

Publication


Featured researches published by Dongguang Wei.


EMBO Reports | 2013

Endogenous electric currents might guide rostral migration of neuroblasts

Lin Cao; Dongguang Wei; Brian Reid; Siwei Zhao; Jin Pu; Tingrui Pan; Ebenezer N. Yamoah; Min Zhao

Mechanisms that guide directional migration of neuroblasts from the subventricular zone (SVZ) are not well understood. We report here that endogenous electric currents serve as a guidance cue for neuroblast migration. We identify the existence of naturally occurring electric currents (1.5±0.6 μA/cm2, average field strength of ∼3 mV/mm) along the rostral migration path in adult mouse brain. Electric fields of similar strength direct migration of neuroblasts from the SVZ in culture and in brain slices. The purinergic receptor P2Y1 mediates this migration. The results indicate that naturally occurring electric currents serve as a new guidance mechanism for rostral neuronal migration.


Journal of Biological Chemistry | 2007

Roles of Alternative Splicing in the Functional Properties of Inner Ear-specific KCNQ4 Channels

Tonghui Xu; Liping Nie; Yi Zhang; Jiling Mo; Weihong Feng; Dongguang Wei; Evgueni Petrov; Lilian E. Calisto; Bechara Kachar; Kirk W. Beisel; Ana E. Vázquez; Ebenezer N. Yamoah

The function of the KCNQ4 channel in the auditory setting is crucial to hearing, underpinned by the finding that mutations of the channel result in an autosomal dominant form of nonsyndromic progressive high frequency hearing loss. The precise function of KCNQ4 in the inner ear has not been established. However, recently we demonstrated that there is differential expression among four splice variants of KCNQ4 (KCNQ4_v1–v4) along the tonotopic axis of the cochlea. Alternative splicing specifies the outcome of functional channels by modifying the amino acid sequences within the C terminus at a site designated as the membrane proximal region. We show that variations within the C terminus of splice variants produce profound differences in the voltage-dependent phenotype and functional expression of the channel. KCNQ4_v4 lacks exons 9–11, resulting in deletion of 54 amino acid residues adjacent to the S6 domain compared with KCNQ4_v1. Consequently, the voltage-dependent activation of KCNQ4_v4 is shifted leftward by ∼20 mV, and the number of functional channels is increased severalfold compared with KCNQ4_v1. The properties of KCNQ4_v2 and KCNQ4_v3 fall between KCNQ4_v1 and KCNQ4_v4. Because of variations in the calmodulin binding domains of the splice variants, the channels are differentially modulated by calmodulin. Co-expression of these splice variants yielded current magnitudes suggesting that the channels are composed of heterotetramers. Indeed, a dominant negative mutant of KCNQ4_v1 cripples the currents of the entire KCNQ4 channel family. Furthermore, the dominant negative KCNQ4 mutant stifles the activity of KCNQ2–5, raising the possibility of a global disruption of KCNQ channel activity and the ensuing auditory phenotype.


Journal of Biological Chemistry | 2010

Kv7-type Channel Currents in Spiral Ganglion Neurons: INVOLVEMENT IN SENSORINEURAL HEARING LOSS

Ping Lv; Dongguang Wei; Ebenezer N. Yamoah

Alterations in Kv7-mediated currents in excitable cells result in several diseased conditions. A case in DFNA2, an autosomal dominant version of progressive hearing loss, involves degeneration of hair cells and spiral ganglion neurons (SGNs) from basal to apical cochlea, manifesting as high-to-low frequency hearing loss, and has been ascribed to mutations in Kv7.4 channels. Analyses of the cellular mechanisms of Kv7.4 mutations and progressive degeneration of SGNs have been hampered by the paucity of functional data on the role Kv7 channels play in young and adult neurons. To understand the cellular mechanisms of the disease in SGNs, we examined temporal (young, 0.5 months old, and senescent, 17 months old) and spatial (apical and basal) roles of Kv7-mediated currents. We report that differential contribution of Kv7 currents in mice SGNs results in distinct and profound variations of the membrane properties of basal versus apical neurons. The current produces a major impact on the resting membrane potential of basal neurons. Inhibition of the current promotes membrane depolarization, resulting in activation of Ca2+ currents and a sustained rise in intracellular Ca2+. Using TUNEL assay, we demonstrate that a sustained increase in intracellular Ca2+ mediated by inhibition of Kv7 current results in significant SGN apoptotic death. Thus, this study provides evidence of the cellular etiology and mechanisms of SGN degeneration in DFNA2.


Jaro-journal of The Association for Research in Otolaryngology | 2007

Conservation of Hearing by Simultaneous Mutation of Na,K-ATPase and NKCC1

Rodney C. Diaz; Ana E. Vázquez; Hongwei Dou; Dongguang Wei; Emma Lou Cardell; Jerry B. Lingrel; Gary E. Shull; Karen Jo Doyle; Ebenezer N. Yamoah

Although drug-induced and age-related hearing losses are frequent otologic problems affecting millions of people, their underlying mechanisms remain uncertain. The inner ear is exclusively endowed with a positive endocochlear potential (EP) that serves as the main driving force for the generation of receptor potential in hair cells to confer hearing. Deterioration of EP leads to hearing loss or deafness. The generation of EP relies on the activity of many ion transporters to establish active potassium (K+) cycling within the inner ear, including K+ channels, the Na–K–2Cl co-transporter (NKCC1), and the α1 and α2 isoforms of Na,K–ATPase. We show that heterozygous deletion of either NKCC1, α1-Na,K–ATPase, or α2–Na,K–ATPase independently results in progressive, age-dependent hearing loss with minimal alteration in cochlear morphology. Double heterozygote deletion of NKCC1 with α1–Na,K–ATPase also shows a progressive, though delayed, age-dependent hearing loss. Remarkably, double heterozygote deletion of NKCC1 with α2–Na,K–ATPase demonstrates a striking preservation of hearing threshold both initially and with age. Measurements of the EP confirm the anticipated drop in potential for genotypes that demonstrate age-dependent hearing loss. The EP generated by the NKCC1 + α2-Na,K–ATPase double heterozygote, however, is maintained at a level comparable to that of the control condition, suggesting a potential advantage in this combination of ion transporter modification. These observations provide insight into the detailed mechanisms of EP generation, and results of combination-knockout experiments may have important implications in the future treatment of drug-induced and age-related hearing losses.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Cells of adult brain germinal zone have properties akin to hair cells and can be used to replace inner ear sensory cells after damage

Dongguang Wei; Snezana Levic; Liping Nie; Wei Qiang Gao; Christine Petit; Edward G. Jones; Ebenezer N. Yamoah

Auditory hair cell defect is a major cause of hearing impairment, often leading to spiral ganglia neuron (SGN) degeneration. The cell loss that follows is irreversible in mammals, because inner ear hair cells (HCs) have a limited capacity to regenerate. Here, we report that in the adult brain of both rodents and humans, the ependymal layer of the lateral ventricle contains cells with proliferative potential, which share morphological and functional characteristics with HCs. In addition, putative neural stem cells (NSCs) from the subventricular zone of the lateral ventricle can differentiate into functional SGNs. Also important, the NSCs can incorporate into the sensory epithelia, demonstrating their therapeutic potential. We assert that NSCs and edendymal cells can undergo an epigenetic functional switch to assume functional characteristics of HCs and SGNs. This study suggests that the functional plasticity of renewable cells and conditions that promote functional reprogramming can be used for cell therapy in the auditory setting.


Cardiovascular Research | 2012

Cardiac-generated prostanoids mediate cardiac myocyte apoptosis after myocardial ischaemia

Hong Qiu; Jun Yan Liu; Dongguang Wei; Ning Li; Ebenezer N. Yamoah; Bruce D. Hammock; Nipavan Chiamvimonvat

AIMS The objective of the present study is to elucidate the pathogenic role of eicosanoids in myocardial infarction (MI). The accumulation of eicosanoid metabolites in ischaemic myocardium has been demonstrated in animal models and patients with MI, and it occurs in parallel with the development of irreversible cardiac damage. However, the key question that remains unanswered is whether cardiac-generated eicosanoids are the cause or the consequence of cardiac cell damage in MI. METHODS AND RESULTS We used a clinically relevant animal model of MI and metabolic profiling to monitor the eicosanoid profile in ischaemic myocardium. We demonstrate that ischaemia induces the generation of prostanoids mainly through the cyclooxygenase (COX)-1 pathway in the myocardium. Cardiac-generated prostanoids, particularly prostaglandin D(2) (PGD(2)), can directly induce apoptosis in cardiac myocytes. This effect involves the up-regulation of the pro-apoptotic gene, Fas ligand (FasL), in a D-type prostanoid receptor-independent manner. The treatment of the MI mice with low-dose aspirin effectively inhibits the ischaemia-induced prostanoid generation and FasL expression in the myocardium, leading to the reduction in cardiac apoptosis following cardiac ischaemia. CONCLUSIONS Cardiac ischaemia results in COX-1-mediated generation of prostanoids, which by inducing cardiac myocyte apoptosis, contribute to the cardiac cell loss following MI. The benefits of low-dose aspirin treatment in MI may be attributable, in part, to the inhibition of cardiac prostanoid generation and attenuation of apoptosis. Further understanding of the mechanisms underlying prostanoid-induced cardiac apoptosis may be of significant value in designing new therapeutic strategies to prevent aberrant cell loss following MI and subsequent progression to heart failure.


Journal of Neurophysiology | 2010

Release and Elementary Mechanisms of Nitric Oxide in Hair Cells

Ping Lv; Adrián Rodríguez-Contreras; Hyo Jeong Kim; Jun Zhu; Dongguang Wei; Sihn Choong-Ryoul; Emily Eastwood; Karen Mu; Snezana Levic; Haitao Song; Petrov Y. Yevgeniy; Peter J. Smith; Ebenezer N. Yamoah

The enzyme nitric oxide (NO) synthase, that produces the signaling molecule NO, has been identified in several cell types in the inner ear. However, it is unclear whether a measurable quantity of NO is released in the inner ear to confer specific functions. Indeed, the functional significance of NO and the elementary cellular mechanism thereof are most uncertain. Here, we demonstrate that the sensory epithelia of the frog saccule release NO and explore its release mechanisms by using self-referencing NO-selective electrodes. Additionally, we investigated the functional effects of NO on electrical properties of hair cells and determined their underlying cellular mechanism. We show detectable amounts of NO are released by hair cells (>50 nM). Furthermore, a hair-cell efferent modulator acetylcholine produces at least a threefold increase in NO release. NO not only attenuated the baseline membrane oscillations but it also increased the magnitude of current required to generate the characteristic membrane potential oscillations. This resulted in a rightward shift in the frequency-current relationship and altered the excitability of hair cells. Our data suggest that these effects ensue because NO reduces whole cell Ca(2+) current and drastically decreases the open probability of single-channel events of the L-type and non L-type Ca(2+) channels in hair cells, an effect that is mediated through direct nitrosylation of the channel and activation of protein kinase G. Finally, NO increases the magnitude of Ca(2+)-activated K(+) currents via direct NO nitrosylation. We conclude that NO-mediated inhibition serves as a component of efferent nerve modulation of hair cells.


Acta Biomaterialia | 2015

Biomimetic stochastic topography and electric fields synergistically enhance directional migration of corneal epithelial cells in a MMP-3-dependent manner.

Jing Gao; Vijay Krishna Raghunathan; Brian Reid; Dongguang Wei; Rodney C. Diaz; Paul Russell; Christopher J. Murphy; Min Zhao

Directed migration of corneal epithelial cells (CECs) is critical for maintenance of corneal homeostasis as well as wound healing. Soluble cytoactive factors and the intrinsic chemical attributes of the underlying extracellular matrix (ECM) participate in stimulating and directing migration. The central importance of the intrinsic biophysical attributes of the microenvironment of the cell in modulating an array of fundamental epithelial behaviors including migration has been widely documented. Among the best measures of these attributes are the intrinsic topography and stiffness of the ECM and electric fields (EFs). How cells integrate these multiple simultaneous inputs is not well understood. Here, we present a method that combines the use of (i) topographically patterned substrates (mean pore diameter 800nm) possessing features that approximate those found in the native corneal basement membrane; and (ii) EFs (0-150mVmm(-1)) mimicking those at corneal epithelial wounds that the cells experience in vivo. We found that topographic cues and EFs synergistically regulated directional migration of human CECs and that this was associated with upregulation of matrix metalloproteinase-3 (MMP3). MMP3 expression and activity were significantly elevated with 150mVmm(-1) applied-EF while MMP2/9 remained unaltered. MMP3 expression was elevated in cells cultured on patterned surfaces against planar surfaces. The highest single-cell migration rate was observed with 150mVmm(-1) applied EF on patterned and planar surfaces. When cultured as a confluent sheet, EFs induced collective cell migration on stochastically patterned surfaces compared with dissociated single-cell migration on planar surfaces. These results suggest significant interaction of biophysical cues in regulating cell behaviors and will help define design parameters for corneal prosthetics and help to better understand corneal wound healing.


Current Opinion in Otolaryngology & Head and Neck Surgery | 2009

Regeneration of the mammalian inner ear sensory epithelium

Dongguang Wei; Ebenezer N. Yamoah

Purpose of reviewThis review will focus on ‘self-repair’ of the mammalian inner ear sensory epithelium, including recruiting the in-situ proliferation and differentiation of endogenous cells at the damaged site and the autologous transplantation Recent findingsSelf-repair refers to a favorable structural and functional outcome of damaged inner ear sensory epithelium. Our advanced ability of manipulating the fate of inner ear sensory cells makes in-situ proliferation a possible candidate of hearing restoration. A practical alternative of the unavoidable immune rejection is to introduce autologous cells. Ependymal cells, induced pluripotent stem cells, and olfactory neuroepithelial cells have been recognized as promising sources, which will spur ongoing efforts to evaluate these new cell sources for cell replacement therapy. SummaryFurther exploration of the innate advantages of in-situ proliferation and use of novel cell sources for autologous transplantation may serve as rehearsals for clinical trials in the near future.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Etiology of distinct membrane excitability in pre- and posthearing auditory neurons relies on activity of Cl− channel TMEM16A

Xiao Dong Zhang; Jeong Han Lee; Ping Lv; Wei Chun Chen; Hyo Jeong Kim; Dongguang Wei; Wenying Wang; Choong Ryoul Sihn; Karen Jo Doyle; Jason R. Rock; Nipavan Chiamvimonvat; Ebenezer N. Yamoah

Significance One of the major issues in auditory neuroscience is the mechanism by which the developing hair cells and spiral ganglion neurons (SGNs) transition from prehearing characteristics to posthearing features. For decades it was thought that spontaneous action potentials in SGNs emanate from spontaneously firing prehearing hair cells. Here, we demonstrate that developing SGNs use Ca2+-activated Cl− conductance to depolarize the resting membrane potential and to prime the neurons in a hyperexcitable prehearing state. Moreover, SGNs undergo global changes in intracellular Cl− homeostasis to alter their coding properties during development. Our findings address the endogenous origin of spontaneous activity in SGNs, transcend auditory-neuron-specific phenomena, and could open the flood gate for investigation on the mechanisms of Cl− regulation in systems neuroscience. The developmental rehearsal for the debut of hearing is marked by massive changes in the membrane properties of hair cells (HCs) and spiral ganglion neurons (SGNs). Whereas the underlying mechanisms for the developing HC transition to mature stage are understood in detail, the maturation of SGNs from hyperexcitable prehearing to quiescent posthearing neurons with broad dynamic range is unknown. Here, we demonstrated using pharmacological approaches, caged-Ca2+ photolysis, and gramicidin patch recordings that the prehearing SGN uses Ca2+-activated Cl− conductance to depolarize the resting membrane potential and to prime the neurons in a hyperexcitable state. Immunostaining of the cochlea preparation revealed the identity and expression of the Ca2+-activated Cl− channel transmembrane member 16A (TMEM16A) in SGNs. Moreover, null deletion of TMEM16A reduced the Ca2+-activated Cl− currents and action potential firing in SGNs. To determine whether Cl− ions and TMEM16A are involved in the transition between pre- and posthearing features of SGNs we measured the intracellular Cl− concentration [Cl−]i in SGNs. Surprisingly, [Cl−]i in SGNs from prehearing mice was ∼90 mM, which was significantly higher than posthearing neurons, ∼20 mM, demonstrating discernible altered roles of Cl− channels in the developing neuron. The switch in [Cl−]i stems from delayed expression of the development of intracellular Cl− regulating mechanisms. Because the Cl− channel is the only active ion-selective conductance with a reversal potential that lies within the dynamic range of SGN action potentials, developmental alteration of [Cl−]i, and hence the equilibrium potential for Cl− (ECl), transforms pre- to posthearing phenotype.

Collaboration


Dive into the Dongguang Wei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ping Lv

University of California

View shared research outputs
Top Co-Authors

Avatar

Rodney C. Diaz

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Reid

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Jo Doyle

University of California

View shared research outputs
Top Co-Authors

Avatar

Liping Nie

University of California

View shared research outputs
Top Co-Authors

Avatar

Min Zhao

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge