Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dongguo Li is active.

Publication


Featured researches published by Dongguo Li.


Science | 2014

Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces

Chen Chen; Yijin Kang; Ziyang Huo; Zhongwei Zhu; Wenyu Huang; Huolin L. Xin; Joshua D. Snyder; Dongguo Li; Jeffrey A. Herron; Manos Mavrikakis; Miaofang Chi; Karren L. More; Yadong Li; Nenad M. Markovic; Gabor A. Somorjai; Peidong Yang; Vojislav R. Stamenkovic

Giving Electrocatalysts an Edge Platinum (Pt) is an excellent catalyst for the oxygen-reduction reaction (ORR) in fuel cells and electrolyzers, but it is too expensive and scarce for widespread deployment, even when dispersed as Pt nanoparticles on carbon electrode supports (Pt/C). Alternatively, Chen et al. (p. 1339, published online 27 February; see the Perspective by Greer) made highly active ORR catalysts by dissolving away the interior of rhombic dodecahedral PtNi3 nanocrystals to leave Pt-rich Pt3Ni edges. These nanoframe catalysts are durable—remaining active after 10,000 rounds of voltage cycling—and are far more active than Pt/C. Highly active electrocatalysts are created by eroding away all but the edges of platinum-nickel nanocrystals. [Also see Perspective by Greer] Control of structure at the atomic level can precisely and effectively tune catalytic properties of materials, enabling enhancement in both activity and durability. We synthesized a highly active and durable class of electrocatalysts by exploiting the structural evolution of platinum-nickel (Pt-Ni) bimetallic nanocrystals. The starting material, crystalline PtNi3 polyhedra, transforms in solution by interior erosion into Pt3Ni nanoframes with surfaces that offer three-dimensional molecular accessibility. The edges of the Pt-rich PtNi3 polyhedra are maintained in the final Pt3Ni nanoframes. Both the interior and exterior catalytic surfaces of this open-framework structure are composed of the nanosegregated Pt-skin structure, which exhibits enhanced oxygen reduction reaction (ORR) activity. The Pt3Ni nanoframe catalysts achieved a factor of 36 enhancement in mass activity and a factor of 22 enhancement in specific activity, respectively, for this reaction (relative to state-of-the-art platinum-carbon catalysts) during prolonged exposure to reaction conditions.


Journal of the American Chemical Society | 2011

Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces.

Chao Wang; Miaofang Chi; Dongguo Li; Dusan Strmcnik; Dennis van der Vliet; Guofeng Wang; Vladimir Komanicky; Kee-Chul Chang; A.P. Paulikas; Dusan Tripkovic; J. Pearson; Karren L. More; Nenad M. Markovic; Vojislav R. Stamenkovic

Advancement in heterogeneous catalysis relies on the capability of altering material structures at the nanoscale, and that is particularly important for the development of highly active electrocatalysts with uncompromised durability. Here, we report the design and synthesis of a Pt-bimetallic catalyst with multilayered Pt-skin surface, which shows superior electrocatalytic performance for the oxygen reduction reaction (ORR). This novel structure was first established on thin film extended surfaces with tailored composition profiles and then implemented in nanocatalysts by organic solution synthesis. Electrochemical studies for the ORR demonstrated that after prolonged exposure to reaction conditions, the Pt-bimetallic catalyst with multilayered Pt-skin surface exhibited an improvement factor of more than 1 order of magnitude in activity versus conventional Pt catalysts. The substantially enhanced catalytic activity and durability indicate great potential for improving the material properties by fine-tuning of the nanoscale architecture.


Journal of the American Chemical Society | 2014

Core/Shell Au/CuPt Nanoparticles and Their Dual Electrocatalysis for Both Reduction and Oxidation Reactions

Xiaolian Sun; Dongguo Li; Yong Ding; Wenlei Zhu; Shaojun Guo; Zhong Lin Wang; Shouheng Sun

We report a facile synthesis of monodisperse core/shell 5/1.5 nm Au/CuPt nanoparticles by coreduction of platinum acetylacetonate and copper acetylacetonate in the presence of 5 nm Au nanoparticles. The CuPt alloy effect and core/shell interactions make these Au/CuPt nanoparticles a promising catalyst for both oxygen reduction reaction and methanol oxidation reaction in 0.1 M HClO4 solution. Their specific (mass) reduction and oxidation activities reach 2.72 mA/cm(2) (1500 mA/mg Pt) at 0.9 V and 0.755 mA/cm(2) (441 mA/mg Pt) at 0.8 V (vs reversible hydrogen electrode), respectively. Our studies show that the existence of the Au nanoparticle core not only minimizes the Pt usage but also improves the stability of the Au/CuPt catalyst for fuel cell reactions. The results suggest that the core/shell design is indeed effective for optimizing nanoparticle catalysis. The same concept may be extended to other multimetallic nanoparticle systems, making it possible to tune nanoparticle catalysis for many different chemical reactions.


Angewandte Chemie | 2012

Unique electrochemical adsorption properties of Pt-skin surfaces.

Dennis van der Vliet; Chao Wang; Dongguo Li; A.P. Paulikas; Jeffrey Greeley; Rees B. Rankin; Dusan Strmcnik; Dusan Tripkovic; Nenad M. Markovic; Vojislav R. Stamenkovic

PtM alloys (M = Co, Ni, Fe, etc.) have been extensively studied for their use in fuel cells, both in well-defined extended surfaces, as well as in nanoparticles. After the report about exceptional activity of Pt3Ni(111)-skin surface [1a] for the oxygen reduction reaction (ORR) a lot of efforts have been made to mimic this catalytic behavior at the nanoscale. It has been shown that a Pt3Ni(111) crystal annealed in ultrahigh vacuum (UHV) shows an oscillating segregation profile, with the outermost layer consisting of pure platinum while the second layer is enriched in nickel compared to the bulk composition. Such a surface we termed Pt skin, and owing to the presence of the non-noble metal in the subsurface layer it has altered electronic properties compared to the monometallic Pt single crystal with the same orientation. Accordingly, altered electronic properties induce a change in adsorption behavior, specifically a shift of surface-oxide formation to higher potentials. This adsorption behavior is believed to be the origin of the high activity for the ORR. On the opposite side of the potential scale, the adsorption of hydrogenated species, denoted as underpotentially adsorbed hydrogen (Hupd), is also largely affected on Pt-skin surfaces. [4] Despite numerous efforts dedicated to synthesize nanocatalysts with Pt-skin-type surfaces, it still remains a challenge to claim their existence at the nanoscale. To systematically resolve this issue, we attempt to provide fundamental insight into the adsorption properties of well-defined Pt-skin surfaces under relevant electrochemical conditions and to transfer that knowledge to corresponding nanocatalysts. For that reason, we first examine the formation and composition of Pt-skin surfaces by low-energy ion scattering (LEIS) and scanning tunneling microscopy (STM) in UHV, and second we study the composition of the surfaces in an electrochemical environment to establish their adsorption properties. We demonstrate by cyclic voltammetry that the surface coverage of Hupd on Pt skin is about half of that found on Pt(111), whereas the surface coverage of a saturated monolayer of carbon monoxide is similar for both surfaces. This is an important finding, which provides a link towards accurate determination of the electrochemically active surface area of nanoscale catalysts. The developed methodology provides additional evidence for the existence of Pt-skin surfaces on Pt-bimetallic nanocatalysts and can substantially diminish errors in the evaluation of the real surface area and catalytic activity. A thorough examination of the Pt-skin surfaces was performed in view of their importance in electrocatalysis as well as in response to recent questions and doubts in the


Energy and Environmental Science | 2014

Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case

Dongguo Li; Chao Wang; Dusan Strmcnik; Dusan Tripkovic; Xiaolian Sun; Yijin Kang; Miaofang Chi; Joshua D. Snyder; Dennis van der Vliet; Yifen Tsai; Vojislav R. Stamenkovic; Shouheng Sun; Nenad M. Markovic

Design of active and stable Pt-based nanoscale electrocatalysts for the oxygen reduction reaction (ORR) will be the key to improving the efficiency of fuel cells that are needed to deliver reliable, affordable and environmentally friendly energy. Here, by exploring the ORR on Pt single crystals, cubo-octahedral (polyhedral) Pt NPs with different sizes (ranging from 2 to 7 nm), and 7–8 nm Pt NPs with different shapes (cubo-octahedral vs. cube vs. octahedral), we presented a surface science approach capable of rationalizing, and ultimately understanding, fundamental relationships between stability of Pt NPs and activity of the ORR in acidic media. By exploring the potential induced dissolution/re-deposition of Pt between 0.05 and 1.3 V, we found that concomitant variations in morphology of Pt(111) and Pt(100) lead to narrowing differences in activity between Pt single crystal surfaces. We also found that regardless of an initial size or shape, NPs are metastable and easily evolve to thermodynamically equilibrated shape and size with very similar activity for the ORR. We concluded that while initially clearly observed, the particle size and shape effects diminish as the particles age to the point that it may appear that the ORR depends neither on the particle size nor particle shape.


Journal of Physical Chemistry Letters | 2012

Rational Development of Ternary Alloy Electrocatalysts

Chao Wang; Dongguo Li; Miaofang Chi; J. Pearson; Rees B. Rankin; Jeffrey Greeley; Zhiyao Duan; Guofeng Wang; Dennis van der Vliet; Karren L. More; Nenad M. Markovic; Vojislav R. Stamenkovic

Improving the efficiency of electrocatalytic reduction of oxygen represents one of the main challenges for the development of renewable energy technologies. Here, we report the systematic evaluation of Pt-ternary alloys (Pt3(MN)1 with M, N = Fe, Co, or Ni) as electrocatalysts for the oxygen reduction reaction (ORR). We first studied the ternary systems on extended surfaces of polycrystalline thin films to establish the trend of electrocatalytic activities and then applied this knowledge to synthesize ternary alloy nanocatalysts by a solvothermal approach. This study demonstrates that the ternary alloy catalysts can be compelling systems for further advancement of ORR electrocatalysis, reaching higher catalytic activities than bimetallic Pt alloys and improvement factors of up to 4 versus monometallic Pt.


Nano Letters | 2014

Multimetallic Core/Interlayer/Shell Nanostructures as Advanced Electrocatalysts

Yijin Kang; Joshua D. Snyder; Miaofang Chi; Dongguo Li; Karren L. More; Nenad M. Markovic; Vojislav R. Stamenkovic

The fine balance between activity and durability is crucial for the development of high performance electrocatalysts. The importance of atomic structure and compositional gradients is a guiding principle in exploiting the knowledge from well-defined materials in the design of novel class of core-shell electrocatalysts comprising Ni core, Au interlayer, and PtNi shell (Ni@Au@PtNi). This multimetallic system is found to have the optimal balance of activity and durability due to the synergy between the stabilizing effect of subsurface Au and modified electronic structure of surface Pt through interaction with subsurface Ni atoms. The electrocatalysts with Ni@Au@PtNi core-interlayer-shell structure exhibit high intrinsic and mass activities as well as superior durability for the oxygen reduction reaction with less than 10% activity loss after 10,000 potential cycles between 0.6 and 1.1 V vs the reversible hydrogen electrode.


Nano Letters | 2011

Surfactant-Induced Postsynthetic Modulation of Pd Nanoparticle Crystallinity

Yi Liu; Chao Wang; Yujie Wei; Leyi Zhu; Dongguo Li; J. Samuel Jiang; Nenad M. Markovic; Vojislav R. Stamenkovic; Shouheng Sun

Modulation of Pd nanoparticle (NP) crystallinity is achieved by switching the surfactants of different binding strengths. Pd NPs synthesized in the presence of weak binding surfactants such as oleylamine possess polyhedral shapes and a polycrystalline nature. When oleylamine is substituted by trioctylphosphine, a much stronger binding surfactant, the particles become spherical and their crystallinity decreases significantly. Moreover, the Pd NPs reconvert their polycrystalline structure when the surfactant is switched back to oleylamine. Through control experiments and molecular dynamics simulation, we propose that this unusual nanocrystallinity transition induced by surfactant exchange was resulted from a counterbalance between the surfactant binding energy and the nanocrystal adhesive energy. The findings represent a novel postsynthetic approach to tailoring the structure and corresponding functional performance of nanomaterials.


Journal of the American Chemical Society | 2017

High-Performance Rh2P Electrocatalyst for Efficient Water Splitting

Haohong Duan; Dongguo Li; Yan Tang; Yang He; Shufang Ji; Rongyue Wang; Haifeng Lv; Pietro Papa Lopes; A.P. Paulikas; Haoyi Li; Scott X. Mao; Chongmin Wang; Nenad M. Markovic; Jun Li; Vojislav R. Stamenkovic; Yadong Li

The search for active, stable, and cost-efficient electrocatalysts for hydrogen production via water splitting could make a substantial impact on energy technologies that do not rely on fossil fuels. Here we report the synthesis of rhodium phosphide electrocatalyst with low metal loading in the form of nanocubes (NCs) dispersed in high-surface-area carbon (Rh2P/C) by a facile solvo-thermal approach. The Rh2P/C NCs exhibit remarkable performance for hydrogen evolution reaction and oxygen evolution reaction compared to Rh/C and Pt/C catalysts. The atomic structure of the Rh2P NCs was directly observed by annular dark-field scanning transmission electron microscopy, which revealed a phosphorus-rich outermost atomic layer. Combined experimental and computational studies suggest that surface phosphorus plays a crucial role in determining the robust catalyst properties.


Nature Communications | 2015

Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing

Miaofang Chi; Chao Wang; Yinkai Lei; Guofeng Wang; Dongguo Li; Karren L. More; Andrew R. Lupini; Lawrence F. Allard; Nenad M. Markovic; Vojislav R. Stamenkovic

The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt3Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt3Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation; nucleation of structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. This work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance.

Collaboration


Dive into the Dongguo Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nenad M. Markovic

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dusan Strmcnik

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karren L. More

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Miaofang Chi

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Chao Wang

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yijin Kang

University of Electronic Science and Technology of China

View shared research outputs
Researchain Logo
Decentralizing Knowledge