Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donghoon Seoung is active.

Publication


Featured researches published by Donghoon Seoung.


Journal of the American Chemical Society | 2011

Pressure- and heat-induced insertion of CO2 into an auxetic small-pore zeolite

Yongjae Lee; Dan Liu; Donghoon Seoung; Zhenxian Liu; Chi-Chang Kao; Thomas Vogt

When the small-pore zeolite natrolite is compressed at ca. 1.5 GPa and heated to ca. 110 °C in the presence of CO(2), the unit cell volume of natrolite expands by 6.8% and ca. 12 wt % of CO(2) is contained in the expanded elliptical channels. This CO(2) insertion into natrolite is found to be reversible upon pressure release.


American Mineralogist | 2010

Natrolite may not be a “soda-stone” anymore: Structural study of fully K-, Rb-, and Cs-exchanged natrolite

Yongjae Lee; Yongmoon Lee; Donghoon Seoung

Abstract Since its first discovery in nature, natrolite has been largely known as a sodium aluminosilicate zeolite, showing very limited preference toward cation exchange. Here we show that fully K-exchanged natrolite can be prepared from natural Na-natrolite under mild aqueous conditions and used to subsequently produce Rb- and Cs-exchanged natrolites. These cation-exchanged natrolites exhibit successive volume expansions by ca. 10, 15.7, and 18.5% for K-, Rb-, and Cs-forms, respectively, compared to the original Na-natrolite. This constitutes the largest, ever-reported volume expansion via cation substitution observed in zeolites and occurs by converting the elliptical channels into progressively circular ones. The observed cation-dependent changes in the channel volume and shape thus show the flexibility limits of the natrolite framework and suggest the possible existence of compositionally altered analogues in suitable environments as well as a novel means to tailor the cation selectivity of this class of small pore zeolites toward various industrial and environmental applications.


Chemistry: A European Journal | 2013

Super-Hydrated Zeolites: Pressure-Induced Hydration in Natrolites

Donghoon Seoung; Yongmoon Lee; Chi-Chang Kao; Thomas Vogt; Yongjae Lee

High-pressure synchrotron X-ray powder diffraction studies of a series of alkali-metal-exchanged natrolites, A16Al16Si24O80·nH2O (A=Li, K, Na, Rb, and Cs and n=14, 16, 22, 24, 32), in the presence of water, reveal structural changes that far exceed what can be achieved by varying temperature and chemical composition. The degree of volume expansion caused by pressure-induced hydration (PIH) is inversely proportional to the non-framework cation radius. The expansion of the unit-cell volume through PIH is as large as 20.6% in Li-natrolite at 1.0 GPa and decreases to 6.7, 3.8, and 0.3% in Na-, K-, and Rb-natrolites, respectively. On the other hand, the onset pressure of PIH appears to increase with non-framework cation radius up to 2.0 GPa in Rb-natrolite. In Cs-natrolite, no PIH is observed but a new phase forms at 0.3 GPa with a 4.8% contracted unit cell and different cation-water configuration in the pores. In K-natrolite, the elliptical channel undergoes a unique overturn upon the formation of super-hydrated natrolite K16Al16Si24O80·32H2O at 1.0 GPa, a species that reverts back above 2.5 GPa as the potassium ions interchange their locations with those of water and migrate from the hinge to the center of the pores. Super-hydrated zeolites are new materials that offer numerous opportunities to expand and modify known chemical and physical properties by reversibly changing the composition and structure using pressure in the presence of water.


American Mineralogist | 2011

Natrolite is not a “soda-stone” anymore: Structural study of alkali (Li+), alkaline-earth (Ca2+, Sr2+, Ba2+) and heavy metal (Cd2+, Pb2+, Ag+) cation-exchanged natrolites

Yongjae Lee; Donghoon Seoung; Yongmoon Lee

Abstract We report here the preparation and structural models of alkaline-earth (Ca2+, Sr2+, Ba2+) and heavy metal (Cd2+, Pb2+, Ag+) cation-exchanged natrolites at ambient conditions and compare them to the alkali (Li+, Na+, K+, Rb+, Cs+) cation forms. The latter two groups all crystallize in the orthorhombic Fdd2 symmetry as the natural sodium natrolite, whereas the alkaline earth analogues are all found in the monoclinic Cc symmetry as scolecite, the natural calcium counterpart. We find the existence of a universal linear relationship between the unit-cell volume and the non-framework cation radius in natrolite. The rotation angles of the fibrous chain units are distributed between 25.5° (Li-form) and 2.9° (Cs-form) to show its inverse proportionality to the non-framework cation radius and the channel opening area. We also propose a possible threshold in the cation radius that dictates the distribution pattern of the non-framework cations and water molecules in the ordered and disordered fashions in natrolite.


Nature Chemistry | 2014

Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures

Donghoon Seoung; Yongmoon Lee; Hyunchae Cynn; Changyong Park; Kwang Yong Choi; Douglas A. Blom; William J. Evans; Chi-Chang Kao; Thomas Vogt; Yongjae Lee

Pressure drastically alters the chemical and physical properties of materials and allows structural phase transitions and chemical reactions to occur that defy much of our understanding gained under ambient conditions. Particularly exciting is the high-pressure chemistry of xenon, which is known to react with hydrogen and ice at high pressures and form stable compounds. Here, we show that Ag16Al16Si24O8·16H2O (Ag-natrolite) irreversibly inserts xenon into its micropores at 1.7 GPa and 250 °C, while Ag(+) is reduced to metallic Ag and possibly oxidized to Ag(2+). In contrast to krypton, xenon is retained within the pores of this zeolite after pressure release and requires heat to desorb. This irreversible insertion and trapping of xenon in Ag-natrolite under moderate conditions sheds new light on chemical reactions that could account for the xenon deficiency relative to argon observed in terrestrial and Martian atmospheres.


American Mineralogist | 2011

In-situ dehydration studies of fully K-, Rb-, and Cs-exchanged natrolites

Yongmoon Lee; Donghoon Seoung; Dan Liu; Min Bum Park; Suk Bong Hong; Haiyan Chen; Jianming Bai; Chi-Chang Kao; Thomas Vogt; Yongjae Lee

Abstract In-situ synchrotron X-ray powder diffraction studies of K-, Rb-, and Cs-exchanged natrolites between room temperature and 425 °C revealed that the dehydrated phases with collapsed frameworks start to form at 175, 150, and 100°C, respectively. The degree of the framework collapse indicated by the unit-cell volume contraction depends on the size of the non-framework cation: K-exchanged natrolite undergoes an 18.8% unit-cell volume contraction when dehydrated at 175 °C, whereas Rband Cs-exchanged natrolites show unit-cell volume contractions of 18.5 and 15.2% at 150 and 100°C, respectively. In the hydrated phases, the dehydration-induced unit-cell volume reduction diminishes as the cation size increases and reveals increasingly a negative slope as smaller cations are substituted into the pores of the natrolite structure. The thermal expansion of the unit-cell volumes of the dehydrated K-, Rb-, and Cs-phases have positive thermal expansion coefficients of 8.80 × 10−5 K−1, 1.03 × 10−4 K−1, and 5.06 × 10−5 K−1, respectively. Rietveld structure refinements of the dehydrated phases at 400 °C reveal that the framework collapses are due to an increase of the chain rotation angles, ψ, which narrow the channels to a more elliptical shape. Compared to their respective hydrated structures at ambient conditions, the dehydrated K-exchanged natrolite at 400°C shows a 2.2-fold increase in ψ, whereas the dehydrated Rb- and Cs-natrolites at 400°C reveal increases of ψ by ca. 3.7 and 7.3 times, respectively. The elliptical channel openings of the dehydrated K-, Rb-, to Cs-phases become larger as the cation size increases. The disordered non-framework cations in the hydrated K-, Rb-, and Csnatrolite order during dehydration and the subsequent framework collapse. The dehydrated phases of Rb- and Cs-natrolite can be stabilized at ambient conditions


Angewandte Chemie | 2012

Immobilization of Large, Aliovalent Cations in the Small‐Pore Zeolite K‐Natrolite by Means of Pressure

Yongjae Lee; Yongmoon Lee; Donghoon Seoung; Jun Hyuk Im; Hee Jung Hwang; Tae Hyun Kim; Dan Liu; Zhenxian Liu; Seung Yeop Lee; Chi-Chang Kao; Thomas Vogt

High-pressure ion exchange of small-pore zeolite K-natrolite allows immobilization of nominally non-exchangeable aliovalent cations such as trivalent europium. A sample exchanged at 3.0(1) GPa and 250 °C contains about 4.7 Eu(III) ions per unit cell, which is equivalent to over 90 % of the K(+) cations being exchanged.


Chemistry: A European Journal | 2013

Pressure‐Induced Hydration and Insertion of CO2 into Ag‐Natrolite

Yongmoon Lee; Donghoon Seoung; Young Nam Jang; Thomas Vogt; Yongjae Lee

CO2 insertion under pressure: In silver-exchanged natrolite, a low and technically achievable onset pressure-induced hydration has been established at 0.4 GPa accompanied by an approximately 5 % expansion in the unit-cell volume (see figure). This unique property has been utilized to trap CO2 under pressure in nominally non-penetrating natrolite pores.


Environmental Science & Technology | 2015

Pressure-induced metathesis reaction to sequester Cs

Junhyuck Im; Donghoon Seoung; Seung Yeop Lee; Douglas A. Blom; Thomas Vogt; Chi-Chang Kao; Yongjae Lee

We report here a pressure-driven metathesis reaction where Ag-exchanged natrolite (Ag16Al16Si24O80·16H2O, Ag-NAT) is pressurized in an aqueous CsI solution, resulting in the exchange of Ag(+) by Cs(+) in the natrolite framework forming Cs16Al16Si24O80·16H2O (Cs-NAT-I) and, above 0.5 GPa, its high-pressure polymorph (Cs-NAT-II). During the initial cation exchange, the precipitation of AgI occurs. Additional pressure and heat at 2 GPa and 160 °C transforms Cs-NAT-II to a pollucite-related, highly dense, and water-free triclinic phase with nominal composition CsAlSi2O6. At ambient temperature after pressure release, the Cs remains sequestered in a now monoclinic pollucite phase at close to 40 wt % and a favorably low Cs leaching rate under back-exchange conditions. This process thus efficiently combines the pressure-driven separation of Cs and I at ambient temperature with the subsequent sequestration of Cs under moderate pressures and temperatures in its preferred waste form suitable for long-term storage at ambient conditions. The zeolite pollucite CsAlSi2O6·H2O has been identified as a potential host material for nuclear waste remediation of anthropogenic (137)Cs due to its chemical and thermal stability, low leaching rate, and the large amount of Cs it can contain. The new water-free pollucite phase we characterize during our process will not display radiolysis of water during longterm storage while maintaining the Cs content and low leaching rate.


American Mineralogist | 2012

Spectroscopic characterization of alkali-metal exchanged natrolites

Dan Liu; Zhenxian Liu; Yongmoon Lee; Donghoon Seoung; Yongjae Lee

Abstract Synchrotron infrared (IR) and micro-Raman spectroscopic studies have been performed on zeolite natrolites as a function of the non-framework composition at ambient conditions. This establishes the spectroscopic characterization of the ion-exchanged natrolites in the alkali-metal series both in the as-prepared hydrated (M-NAT-hyd, M = Li, Na, K, Rb, and Cs) and some stable dehydrated forms (MNAT- deh, M = Rb and Cs). The former series exhibits non-framework cation-size dependent opening of the helical channels to span ca. 21° range in terms of the chain rotation angle, ψ (or ca. 45° range in terms of the chain bridging angle, T-O2-T). For these hydrated phases, both IR and Raman spectra reveal that the degree of the red-shifts in the frequencies of the helical 8-ring channel as well as the 4-ring unit is proportional to the ionic radius of the non-framework cations. Linear fits to the data show negative slopes of -55.7 from Raman and -18.3 from IR in the 8-ring frequencies and ionic radius relationship. The spectroscopic data are also used to identify the modes of the dehydration-induced “collapse” of the helical 8-ring channels as observed in the stable anhydrous Rb-NAT-deh and Cs- NAT-deh. In addition, we demonstrate that the spectroscopic data in the hydrated series can be used to distinguish different water arrangements along the helical channels based on the frequency shifts in the H-O-H bending band and the changes in the O-H stretching vibration modes.

Collaboration


Dive into the Donghoon Seoung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Vogt

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Chi-Chang Kao

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Zhenxian Liu

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas A. Blom

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyunchae Cynn

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge