Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donghun Shin is active.

Publication


Featured researches published by Donghun Shin.


Cell | 2002

Sensory Nerves Determine the Pattern of Arterial Differentiation and Blood Vessel Branching in the Skin

Yoh-suke Mukouyama; Donghun Shin; Stefan Britsch; Masahiko Taniguchi; David J. Anderson

Nerves and blood vessels are branched structures, but whether their branching patterns are established independently or coordinately is not clear. Here we show that arteries, but not veins, are specifically aligned with peripheral nerves in embryonic mouse limb skin. Mutations that eliminate peripheral sensory nerves or Schwann cells prevent proper arteriogenesis, while those that disorganize the nerves maintain the alignment of arteries with misrouted axons. In vitro, sensory neurons or Schwann cells can induce arterial marker expression in isolated embryonic endothelial cells, and VEGF(164/120) is necessary and sufficient to mediate this induction. These data suggest that peripheral nerves provide a template that determines the organotypic pattern of blood vessel branching and arterial differentiation in the skin, via local secretion of VEGF.


Development | 2007

Bmp and Fgf signaling are essential for liver specification in zebrafish

Donghun Shin; Chong Hyun Shin; Jennifer A. Tucker; Elke A. Ober; Fabian Rentzsch; Kenneth D. Poss; Matthias Hammerschmidt; Mary C. Mullins; Didier Y. R. Stainier

Based on data from in vitro tissue explant and ex vivo cell/bead implantation experiments, Bmp and Fgf signaling have been proposed to regulate hepatic specification. However, genetic evidence for this hypothesis has been lacking. Here, we provide in vivo genetic evidence that Bmp and Fgf signaling are essential for hepatic specification. We utilized transgenic zebrafish that overexpress dominant-negative forms of Bmp or Fgf receptors following heat-shock induction. These transgenes allow one to bypass the early embryonic requirements for Bmp and Fgf signaling, and also to completely block Bmp or Fgf signaling. We found that the expression of hhex and prox1, the earliest liver markers in zebrafish, was severely reduced in the liver region when Bmp or Fgf signaling was blocked just before hepatic specification. However, hhex and prox1 expression in adjacent endodermal and mesodermal tissues appeared unaffected by these manipulations. Additional genetic studies indicate that the endoderm maintains competence for Bmp-mediated hepatogenesis over an extended window of embryonic development. Altogether, these data provide the first genetic evidence that Bmp and Fgf signaling are essential for hepatic specification, and suggest that endodermal cells remain competent to differentiate into hepatocytes for longer than anticipated.


Developmental Biology | 2009

Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration

Ryan M. Anderson; Justin A. Bosch; Mary G. Goll; Daniel Hesselson; P. Duc Si Dong; Donghun Shin; Neil C. Chi; Chong Hyun Shin; Amnon Schlegel; Marnie E. Halpern; Didier Y. R. Stainier

Developmental mechanisms regulating gene expression and the stable acquisition of cell fate direct cytodifferentiation during organogenesis. Moreover, it is likely that such mechanisms could be exploited to repair or regenerate damaged organs. DNA methyltransferases (Dnmts) are enzymes critical for epigenetic regulation, and are used in concert with histone methylation and acetylation to regulate gene expression and maintain genomic integrity and chromosome structure. We carried out two forward genetic screens for regulators of endodermal organ development. In the first, we screened for altered morphology of developing digestive organs, while in the second we screed for the lack of terminally differentiated cell types in the pancreas and liver. From these screens, we identified two mutant alleles of zebrafish dnmt1. Both lesions are predicted to eliminate dnmt1 function; one is a missense mutation in the catalytic domain and the other is a nonsense mutation that eliminates the catalytic domain. In zebrafish dnmt1 mutants, the pancreas and liver form normally, but begin to degenerate after 84 h post fertilization (hpf). Acinar cells are nearly abolished through apoptosis by 100 hpf, though neither DNA replication, nor entry into mitosis is halted in the absence of detectable Dnmt1. However, endocrine cells and ducts are largely spared. Surprisingly, dnmt1 mutants and dnmt1 morpholino-injected larvae show increased capacity for pancreatic beta cell regeneration in an inducible model of pancreatic beta cell ablation. Thus, our data suggest that Dnmt1 is dispensable for pancreatic duct or endocrine cell formation, but not for acinar cell survival. In addition, Dnmt1 may influence the differentiation of pancreatic beta cell progenitors or the reprogramming of cells toward the pancreatic beta cell fate.


Gastroenterology | 2014

Extensive Conversion of Hepatic Biliary Epithelial Cells to Hepatocytes After Near Total Loss of Hepatocytes in Zebrafish

Tae–Young Choi; Nikolay Ninov; Didier Y. R. Stainier; Donghun Shin

BACKGROUND & AIMS Biliary epithelial cells (BECs) are considered to be a source of regenerating hepatocytes when hepatocyte proliferation is compromised. However, there is still controversy about the extent to which BECs can contribute to the regenerating hepatocyte population, and thereby to liver recovery. To investigate this issue, we established a zebrafish model of liver regeneration in which the extent of hepatocyte ablation can be controlled. METHODS Hepatocytes were depleted by administration of metronidazole to Tg(fabp10a:CFP-NTR) animals. We traced the origin of regenerating hepatocytes using short-term lineage-tracing experiments, as well as the inducible Cre/loxP system; specifically, we utilized both a BEC tracer line Tg(Tp1:CreER(T2)) and a hepatocyte tracer line Tg(fabp10a:CreER(T2)). We also examined BEC and hepatocyte proliferation and liver marker gene expression during liver regeneration. RESULTS BECs gave rise to most of the regenerating hepatocytes in larval and adult zebrafish after severe hepatocyte depletion. After hepatocyte loss, BECs proliferated as they dedifferentiated into hepatoblast-like cells; they subsequently differentiated into highly proliferative hepatocytes that restored the liver mass. This process was impaired in zebrafish wnt2bb mutants; in these animals, hepatocytes regenerated but their proliferation was greatly reduced. CONCLUSIONS BECs contribute to regenerating hepatocytes after substantial hepatocyte depletion in zebrafish, thereby leading to recovery from severe liver damage.


PLOS Genetics | 2012

sox9b Is a Key Regulator of Pancreaticobiliary Ductal System Development

Marion Delous; Chunyue Yin; Donghun Shin; Nikolay Ninov; Juliana Debrito Carten; Luyuan Pan; Taylur P. Ma; Steven A. Farber; Cecilia B. Moens; Didier Y. R. Stainier

The pancreaticobiliary ductal system connects the liver and pancreas to the intestine. It is composed of the hepatopancreatic ductal (HPD) system as well as the intrahepatic biliary ducts and the intrapancreatic ducts. Despite its physiological importance, the development of the pancreaticobiliary ductal system remains poorly understood. The SRY-related transcription factor SOX9 is expressed in the mammalian pancreaticobiliary ductal system, but the perinatal lethality of Sox9 heterozygous mice makes loss-of-function analyses challenging. We turned to the zebrafish to assess the role of SOX9 in pancreaticobiliary ductal system development. We first show that zebrafish sox9b recapitulates the expression pattern of mouse Sox9 in the pancreaticobiliary ductal system and use a nonsense allele of sox9b, sox9bfh313, to dissect its function in the morphogenesis of this structure. Strikingly, sox9bfh313 homozygous mutants survive to adulthood and exhibit cholestasis associated with hepatic and pancreatic duct proliferation, cyst formation, and fibrosis. Analysis of sox9bfh313 mutant embryos and larvae reveals that the HPD cells appear to mis-differentiate towards hepatic and/or pancreatic fates, resulting in a dysmorphic structure. The intrahepatic biliary cells are specified but fail to assemble into a functional network. Similarly, intrapancreatic duct formation is severely impaired in sox9bfh313 mutants, while the embryonic endocrine and acinar compartments appear unaffected. The defects in the intrahepatic and intrapancreatic ducts of sox9bfh313 mutants worsen during larval and juvenile stages, prompting the adult phenotype. We further show that Sox9b interacts with Notch signaling to regulate intrahepatic biliary network formation: sox9b expression is positively regulated by Notch signaling, while Sox9b function is required to maintain Notch signaling in the intrahepatic biliary cells. Together, these data reveal key roles for SOX9 in the morphogenesis of the pancreaticobiliary ductal system, and they cast human Sox9 as a candidate gene for pancreaticobiliary duct malformation-related pathologies.


PLOS Genetics | 2013

Autophagy Induction Is a Tor- and Tp53-Independent Cell Survival Response in a Zebrafish Model of Disrupted Ribosome Biogenesis

Yeliz Boglev; Andrew P. Badrock; Andrew Trotter; Qian Du; Elsbeth J Richardson; Adam C. Parslow; Sebastian Markmiller; Nathan E. Hall; Tanya A. de Jong-Curtain; Annie Y Ng; Heather Verkade; Elke A. Ober; Holly A. Field; Donghun Shin; Chong Shin; Katherine M. Hannan; Ross D. Hannan; Richard B. Pearson; Seok-Hyung Kim; Kevin C. Ess; Graham J. Lieschke; Didier Y. R. Stainier; Joan K. Heath

Ribosome biogenesis underpins cell growth and division. Disruptions in ribosome biogenesis and translation initiation are deleterious to development and underlie a spectrum of diseases known collectively as ribosomopathies. Here, we describe a novel zebrafish mutant, titania (ttis450), which harbours a recessive lethal mutation in pwp2h, a gene encoding a protein component of the small subunit processome. The biochemical impacts of this lesion are decreased production of mature 18S rRNA molecules, activation of Tp53, and impaired ribosome biogenesis. In ttis450, the growth of the endodermal organs, eyes, brain, and craniofacial structures is severely arrested and autophagy is up-regulated, allowing intestinal epithelial cells to evade cell death. Inhibiting autophagy in ttis450 larvae markedly reduces their lifespan. Somewhat surprisingly, autophagy induction in ttis450 larvae is independent of the state of the Tor pathway and proceeds unabated in Tp53-mutant larvae. These data demonstrate that autophagy is a survival mechanism invoked in response to ribosomal stress. This response may be of relevance to therapeutic strategies aimed at killing cancer cells by targeting ribosome biogenesis. In certain contexts, these treatments may promote autophagy and contribute to cancer cells evading cell death.


Developmental Dynamics | 2005

Isolation of arterial‐specific genes by subtractive hybridization reveals molecular heterogeneity among arterial endothelial cells

Donghun Shin; David J. Anderson

Arteries are distinguished from veins by differences in gene expression, as well as in their anatomy and physiology. The characterization of arterial‐ and venous‐specific genes may improve our understanding of cardiovascular development and disease. Here we report the results of a subtractive hybridization screen for arterial‐specific genes, and describe in detail the expression of a novel arterial‐specific gene, Depp (decidual protein induced by progesterone), using a GFP‐Cre knock‐in that permits a comparison of both instantaneous and cumulative expression patterns in situ. Several features of Depp expression are noteworthy. First, Depp is expressed in endothelial cells of peripheral tissues, but not in atrial or ventricular endocardial cells of the heart. Very few genes have been reported to discriminate between these two cell types, and therefore this specificity may be useful in generating conditional mutations in other genes implicated in cardiovascular development. Second, Depp reveals an unexpected degree of molecular heterogeneity among arterial endothelial cells. Third, Depp is up‐regulated in subsets of endothelial cells, in settings of adult neo‐vascularization, including tumor angiogenesis. Taken together, these data reveal unanticipated temporal and spatial heterogeneity among arterial endothelial cells of various tissues and organs, raising new questions regarding the functional significance of this diversity. Developmental Dynamics 233:1589–1604, 2005.


Development | 2011

Restriction of hepatic competence by Fgf signaling

Donghun Shin; Yoonsung Lee; Kenneth D. Poss; Didier Y. R. Stainier

Hepatic competence, or the ability to respond to hepatic-inducing signals, is regulated by a number of transcription factors broadly expressed in the endoderm. However, extrinsic signals might also regulate hepatic competence, as suggested by tissue explant studies. Here, we present genetic evidence that Fgf signaling regulates hepatic competence in zebrafish. We first show that the endoderm posterior to the liver-forming region retains hepatic competence: using transgenic lines that overexpress hepatic inducing signals following heat-shock, we found that at late somitogenesis stages Wnt8a, but not Bmp2b, overexpression could induce liver gene expression in pancreatic and intestinal bulb cells. These manipulations resulted in the appearance of ectopic hepatocytes in the intestinal bulb. Second, by overexpressing Wnt8a at various stages, we found that as embryos develop, the extent of the endodermal region retaining hepatic competence is gradually reduced. Most significantly, we found, using gain- and loss-of-function approaches, that Fgf10a signaling regulates this gradual reduction of the hepatic-competent domain. These data provide in vivo evidence that endodermal cells outside the liver-forming region retain hepatic competence and show that an extrinsic signal, Fgf10a, negatively regulates hepatic competence.


Comprehensive Physiology | 2013

Cellular and molecular basis of liver development.

Donghun Shin; Satdarshan P.S. Monga

Liver is a prime organ responsible for synthesis, metabolism, and detoxification. The organ is endodermal in origin and its development is regulated by temporal, complex, and finely balanced cellular and molecular interactions that dictate its origin, growth, and maturation. We discuss the relevance of endoderm patterning, which truly is the first step toward mapping of domains that will give rise to specific organs. Once foregut patterning is completed, certain cells within the foregut endoderm gain competence in the form of expression of certain transcription factors that allow them to respond to certain inductive signals. Hepatic specification is then a result of such inductive signals, which often emanate from the surrounding mesenchyme. During hepatic specification bipotential hepatic stem cells or hepatoblasts become apparent and undergo expansion, which results in a visible liver primordium during the stage of hepatic morphogenesis. Hepatoblasts next differentiate into either hepatocytes or cholangiocytes. The expansion and differentiation is regulated by cellular and molecular interactions between hepatoblasts and mesenchymal cells including sinusoidal endothelial cells, stellate cells, and also innate hematopoietic elements. Further maturation of hepatocytes and cholangiocytes continues during late hepatic development as a function of various growth factors. At this time, liver gains architectural novelty in the form of zonality and at cellular level acquires polarity. A comprehensive elucidation of such finely tuned developmental cues have been the basis of transdifferentiation of various types of stem cells to hepatocyte-like cells for purposes of understanding health and disease and for therapeutic applications.


Mechanisms of Development | 2012

Intrinsic and extrinsic modifiers of the regulative capacity of the developing liver

Donghun Shin; Gilbert Weidinger; Randall T. Moon; Didier Y. R. Stainier

Zebrafish wnt2bb mutants initially fail to form a liver, but surprisingly the liver eventually forms in a majority of these embryos which then develop into fertile adults. This unexpected result raised the possibility that identifying the mechanisms of liver formation in wnt2bb mutants could provide insights into the poorly understood yet general principle of regulative development, a process by which some cells can change fate in order to compensate for a deficiency. Here, we identify two factors that underlie the regulative capacity of endodermal tissues: an intrinsic factor, Sox32, a transcription factor of the SoxF subfamily, and an extrinsic factor, Fgf10a. sox32 is expressed in the extrahepatic duct primordium which is not affected in wnt2bb mutants. Blocking Sox32 function prevented liver formation in most wnt2bb mutants. fgf10a, which is expressed in the mesenchyme surrounding non-hepatic endodermal cells, negatively impacts the regulative capacity of endodermal tissues. In Wnt/β-catenin signaling deficient embryos, in which the liver completely fails to form, the repression of Fgf10a function allowed liver formation. Altogether, these studies reveal that there is more than one way to form a liver, and provide molecular insights into the phenomenon of tissue plasticity.

Collaboration


Dive into the Donghun Shin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ju-Hoon So

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Tae-Young Choi

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

David J. Anderson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mehwish Khaliq

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sungjin Ko

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Nikolay Ninov

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Hai U. Wang

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge