Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donghyuk Kim is active.

Publication


Featured researches published by Donghyuk Kim.


Analytical Chemistry | 2012

Neutrophil chemotaxis within a competing gradient of chemoattractants.

Donghyuk Kim; Christy L. Haynes

The dynamics of neutrophil chemotaxis under competing chemoattractant gradients was studied using a microfluidic platform. This microfluidic platform, which establishes a stable and dynamic gradient of chemoattractants across a cell culture chamber, enabled the investigation of human neutrophil migration patterns in the presences of four different chemoattractants (leukotriene B(4), chemokine C-X-C motif ligands 2 and 8, and fMLP) and competing gradients of all pairwise combinations. The migration patterns for individual cells were tracked and quantitatively analyzed, and the results suggest a hierarchy among these chemoattractants of fMLP > CXCL8 > CXCL2 > leukotriene B(4). In all conditions, over 60% of neutrophils exposed to a competing gradient move toward the stronger signal though the weaker chemoattractant still influences neutrophil motility. These results yield insight about how each chemoattractant contributes to overall neutrophil chemotaxis within complex physiological environments.


Analytical Chemistry | 2011

On-Chip Evaluation of Shear Stress Effect on Cytotoxicity of Mesoporous Silica Nanoparticles

Donghyuk Kim; Yu Shen Lin; Christy L. Haynes

In this work, nanotoxicity in the bloodstream was modeled, and the cytotoxicity of sub-50 nm mesoporous silica nanoparticles to human endothelial cells was investigated under microfluidic flow conditions. Compared to traditional in vitro cytotoxicity assays performed under static conditions, unmodified mesoporous silica nanoparticles show higher and shear stress-dependent toxicity to endothelial cells under flow conditions. Interestingly, even under flow conditions, highly organo-modified mesoporous silica nanoparticles show no significant toxicity to endothelial cells. This paper clearly demonstrates that shear stress is an important factor to be considered in in vitro nanotoxicology assessments and provides a simple device for pursuing this consideration.


Accounts of Chemical Research | 2014

Microfluidics-Based in Vivo Mimetic Systems for the Study of Cellular Biology

Donghyuk Kim; Xiaojie Wu; Ashlyn T. Young; Christy L. Haynes

Conspectus The human body is a complex network of molecules, organelles, cells, tissues, and organs: an uncountable number of interactions and transformations interconnect all the system’s components. In addition to these biochemical components, biophysical components, such as pressure, flow, and morphology, and the location of all of these interactions play an important role in the human body. Technical difficulties have frequently limited researchers from observing cellular biology as it occurs within the human body, but some state-of-the-art analytical techniques have revealed distinct cellular behaviors that occur only in the context of the interactions. These types of findings have inspired bioanalytical chemists to provide new tools to better understand these cellular behaviors and interactions. What blocks us from understanding critical biological interactions in the human body? Conventional approaches are often too naïve to provide realistic data and in vivo whole animal studies give complex results that may or may not be relevant for humans. Microfluidics offers an opportunity to bridge these two extremes: while these studies will not model the complexity of the in vivo human system, they can control the complexity so researchers can examine critical factors of interest carefully and quantitatively. In addition, the use of human cells, such as cells isolated from donated blood, captures human-relevant data and limits the use of animals in research. In addition, researchers can adapt these systems easily and cost-effectively to a variety of high-end signal transduction mechanisms, facilitating high-throughput studies that are also spatially, temporally, or chemically resolved. These strengths should allow microfluidic platforms to reveal critical parameters in the human body and provide insights that will help with the translation of pharmacological advances to clinical trials. In this Account, we describe selected microfluidic innovations within the last 5 years that focus on modeling both biophysical and biochemical interactions in cellular communication, such as flow and cell–cell networks. We also describe more advanced systems that mimic higher level biological networks, such as organ on-a-chip and animal on-a-chip models. Since the first papers in the early 1990s, interest in the bioanalytical use of microfluidics has grown significantly. Advances in micro-/nanofabrication technology have allowed researchers to produce miniaturized, biocompatible assay platforms suitable for microfluidic studies in biochemistry and chemical biology. Well-designed microfluidic platforms can achieve quick, in vitro analyses on pico- and femtoliter volume samples that are temporally, spatially, and chemically resolved. In addition, controlled cell culture techniques using a microfluidic platform have produced biomimetic systems that allow researchers to replicate and monitor physiological interactions. Pioneering work has successfully created cell–fluid, cell–cell, cell–tissue, tissue–tissue, even organ-like level interfaces. Researchers have monitored cellular behaviors in these biomimetic microfluidic environments, producing validated model systems to understand human pathophysiology and to support the development of new therapeutics.


Analytical Chemistry | 2011

Electroanalytical eavesdropping on single cell communication.

Donghyuk Kim; Secil Koseoglu; Benjamin M. Manning; Audrey F. Meyer; Christy L. Haynes

This article reviews measurement of single cell exocytosis with microelectrodes, covering history, basic instrumentation, cell types investigated, and fundamental insight gained.


Analyst | 2014

Microfluidic-SERS devices for one shot limit-of-detection

Donghyuk Kim; Antonio R. Campos; Ashish Datt; Zhe Gao; Matthew Rycenga; Nathan D. Burrows; Nathan G. Greeneltch; Chad A. Mirkin; Catherine J. Murphy; Richard P. Van Duyne; Christy L. Haynes

Microfluidic sensing platforms facilitate parallel, low sample volume detection using various optical signal transduction mechanisms. Herein, we introduce a simple mixing microfluidic device, enabling serial dilution of introduced analyte solution that terminates in five discrete sensing elements. We demonstrate the utility of this device with on-chip fluorescence and surface-enhanced Raman scattering (SERS) detection of analytes, and we demonstrate device use both when combined with a traditional inflexible SERS substrate and with SERS-active nanoparticles that are directly incorporated into microfluidic channels to create a flexible SERS platform. The results indicate, with varying sensitivities, that either flexible or inflexible devices can be easily used to create a calibration curve and perform a limit of detection study with a single experiment.


Analytical Chemistry | 2013

On-Chip Evaluation of Neutrophil Activation and Neutrophil-Endothelial cell Interaction during Neutrophil Chemotaxis

Donghyuk Kim; Christy L. Haynes

Neutrophils are always surrounded by/interacting with other components of the immune system; however, the current mechanistic understanding of neutrophil function is largely based on how neutrophils respond to a single chemical signal in a simplified environment. Such approaches are unable to recapitulate the in vivo microenvironment; thus, cell behavior may not fully represent the physiological behavior. Herein, we exploit a microfluidic model of the complex in vivo milieu to investigate how cell-cell interactions influence human neutrophil migration and surface marker expression. Neutrophil migration against a bacterially derived chemoattractant (formyl-met-leu-phe, fMLP), with and without preactivation by interleukins (interleukin-2 or interleukin-6), was evaluated in the presence and absence of endothelial support cells. Preactivation by interleukins or interaction with endothelial cells resulted in altered migration rates compared to naïve neutrophils, and migration trajectories deviated from the expected movement toward the fMLP signal. Interestingly, interaction with both interleukins and endothelial cells simultaneously resulted in a slight compensation in the deviation-on endothelial cells, 34.4% of untreated neutrophils moved away from the fMLP signal, while only 15.2 or 22.2% (interleukin-2-or interleukin-6-activated) of preactivated cells moved away from fMLP. Neutrophils interacting with interleukins and/or endothelial cells were still capable of prioritizing the fMLP signal over a competing chemoattractant, leukotriene B4 (LTB4). Fluorescence imaging of individual human neutrophils revealed that neutrophils treated with endothelial-cell-conditioned media showed up-regulation of the surface adhesion molecules cluster determinant 11b and 66b (CD11b and CD66b) upon stimulation. On the other hand, CD11b and CD66b down-regulation was observed in untreated neutrophils. These results leverage single cell analysis to reveal that the interaction between neutrophils and endothelial cells is involved in surface marker regulation and thus chemotaxis of neutrophils. This study brings new knowledge about neutrophil chemotaxis in the context of cell-to-cell communications, yielding both fundamental and therapeutically relevant insight.


Analyst | 2013

The role of p38 MAPK in neutrophil functions: single cell chemotaxis and surface marker expression

Donghyuk Kim; Christy L. Haynes

Neutrophils act as the first line of defence in the human immune system by migrating to the site of abnormal events and performing their designated roles. One major signalling pathway that drives neutrophil action in vivo is the p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Herein, a microfluidic platform is employed to explore the mechanistic role of p38 MAPK in neutrophil chemotaxis. Neutrophils, with and without p38 MAPK inhibition, were exposed to pairwise competing gradients of chemotaxis-inducing molecules. Overall, p38 MAPK inhibitor-treated neutrophils were still capable of moving toward a chemoattractant signal; however, the hierarchy of neutrophil response to various chemoattractants changed and there was more deviation from direct movement toward a chemoattractant signal in p38 MAPK-blocked cells. In a parallel fluorescence imaging study, neutrophil expression of surface receptors (CXCR1, FPR2, BLTR, CD11b and CD66b) changed when comparing untreated and p38 MAPK-blocked cells. All results demonstrate that the p38 MAPK-dependent pathway plays a critical role in neutrophil chemotaxis and this role is, in part, through the regulation of surface receptor expression. These data regarding how receptor expression and chemotaxis are influenced by the p38 MAPK pathways lend insight into neutrophil behaviour in physiological environments and the potential manipulation of p38 MAPK for therapeutic purposes.


ACS Nano | 2016

Homogeneous Entropy-Driven Amplified Detection of Biomolecular Interactions

Donghyuk Kim; Omai B. Garner; Aydogan Ozcan; Dino Di Carlo

While a range of artificial biochemical circuits is likely to play a significant role in biological engineering, one of the challenges in the field is the design of circuits that can transduce between biomolecule classes (e.g., moving beyond nucleic acid only circuits). Herein, we design a transduction mechanism whereby a protein signal is transduced into an amplified nucleic acid output using DNA nanotechnology. In this system, a protein is recognized by nucleic acid bound recognition elements to form a catalytic complex that drives a hybridization/displacement reaction on a multicomponent nucleic acid substrate, releasing multiple target single-stranded oligonucleotides in an amplified fashion. Amplification power and simple one-pot reaction conditions lead us to apply the scheme in an assay format, achieving homogeneous and rapid (∼10 min) analyte detection that is also robust (operable in whole blood and plasma). In addition, we demonstrate the assay in a microfluidic digital assay format leading to improved quantification and sensitivity approaching single-molecule levels. The present scheme we believe will have a significant impact on a range of applications from fundamental molecular interaction studies to design of artificial circuits in vivo to high-throughput, multiplexed assays for screening or point-of-care diagnostics.


Microsystems & Nanoengineering | 2017

High-throughput physical phenotyping of cell differentiation

Jonathan Lin; Donghyuk Kim; Henry T. Tse; Peter Tseng; Lillian Peng; Manjima Dhar; Saravanan Karumbayaram; Dino Di Carlo

In this report, we present multiparameter deformability cytometry (m-DC), in which we explore a large set of parameters describing the physical phenotypes of pluripotent cells and their derivatives. m-DC utilizes microfluidic inertial focusing and hydrodynamic stretching of single cells in conjunction with high-speed video recording to realize high-throughput characterization of over 20 different cell motion and morphology-derived parameters. Parameters extracted from videos include size, deformability, deformation kinetics, and morphology. We train support vector machines that provide evidence that these additional physical measurements improve classification of induced pluripotent stem cells, mesenchymal stem cells, neural stem cells, and their derivatives compared to size and deformability alone. In addition, we utilize visual interactive stochastic neighbor embedding to visually map the high-dimensional physical phenotypic spaces occupied by these stem cells and their progeny and the pathways traversed during differentiation. This report demonstrates the potential of m-DC for improving understanding of physical differences that arise as cells differentiate and identifying cell subpopulations in a label-free manner. Ultimately, such approaches could broaden our understanding of subtle changes in cell phenotypes and their roles in human biology.


Analytical Chemistry | 2015

Analytical characterization of the role of phospholipids in platelet adhesion and secretion

Secil Koseoglu; Audrey F. Meyer; Donghyuk Kim; Ben M. Meyer; Yiwen Wang; Joseph J. Dalluge; Christy L. Haynes

The cellular phospholipid membrane plays an important role in cell function and cell–cell communication, but its biocomplexity and dynamic nature presents a challenge for examining cellular uptake of phospholipids and the resultant effects on cell function. Platelets, small anuclear circulating cell bodies that influence a wide variety of physiological functions through their dynamic secretory and adhesion behavior, present an ideal platform for exploring the effects of exogenous phospholipids on membrane phospholipid content and cell function. In this work, a broad range of platelet functions are quantitatively assessed by leveraging a variety of analytical chemistry techniques, including ultraperformance liquid chromatography–tandem electrospray ionization mass spectrometry (UPLC–MS/MS), vasculature-mimicking microfluidic analysis, and single cell carbon-fiber microelectrode amperometry (CFMA). The relative enrichments of phosphatidylserine (PS) and phosphatidylethanolamine (PE) were characterized with UPLC–MS/MS, and the effects of the enrichment of these two phospholipids on both platelet secretory behavior and adhesion were examined. Results show that, in fact, both PS and PE influence platelet adhesion and secretion. PS was enriched dramatically and decreased platelet adhesion as well as secretion from δ-, α-, and lysosomal granules. PE enrichment was moderate and increased secretion from platelet lysosomes. These insights illuminate the critical connection between membrane phospholipid character and platelet behavior, and both the methods and results presented herein are likely translatable to other mammalian cell systems.

Collaboration


Dive into the Donghyuk Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dino Di Carlo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aydogan Ozcan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashlyn T. Young

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben M. Meyer

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Chueh-Yu Wu

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge