Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dongjie Shang is active.

Publication


Featured researches published by Dongjie Shang.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Elucidating severe urban haze formation in China

Song Guo; Min Hu; Misti L. Zamora; Jianfei Peng; Dongjie Shang; Jing Zheng; Zhuofei Du; Zhijun Wu; Min Shao; Limin Zeng; Mario J. Molina; Renyi Zhang

Significance We illustrate the similarity and difference in particulate matter (PM) formation between Beijing and other world regions. The periodic cycle of PM events in Beijing is regulated by meteorological conditions. While the particle chemical compositions in Beijing are similar to those commonly measured worldwide, efficient nucleation and growth over an extended period in Beijing are distinctive from the aerosol formation typically observed in other global areas. Gaseous emissions of volatile organic compounds and nitrogen oxides from urban transportation and sulfur dioxide from regional industry are responsible for large secondary PM formation, while primary emissions and regional transport of PM are insignificant. Reductions in emissions of the aerosol precursor gases from transportation and industry are essential to mediate severe haze pollution in China. As the world’s second largest economy, China has experienced severe haze pollution, with fine particulate matter (PM) recently reaching unprecedentedly high levels across many cities, and an understanding of the PM formation mechanism is critical in the development of efficient mediation policies to minimize its regional to global impacts. We demonstrate a periodic cycle of PM episodes in Beijing that is governed by meteorological conditions and characterized by two distinct aerosol formation processes of nucleation and growth, but with a small contribution from primary emissions and regional transport of particles. Nucleation consistently precedes a polluted period, producing a high number concentration of nano-sized particles under clean conditions. Accumulation of the particle mass concentration exceeding several hundred micrograms per cubic meter is accompanied by a continuous size growth from the nucleation-mode particles over multiple days to yield numerous larger particles, distinctive from the aerosol formation typically observed in other regions worldwide. The particle compositions in Beijing, on the other hand, exhibit a similarity to those commonly measured in many global areas, consistent with the chemical constituents dominated by secondary aerosol formation. Our results highlight that regulatory controls of gaseous emissions for volatile organic compounds and nitrogen oxides from local transportation and sulfur dioxide from regional industrial sources represent the key steps to reduce the urban PM level in China.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Persistent sulfate formation from London Fog to Chinese haze

Gehui Wang; Renyi Zhang; Mario E. Gomez; Lingxiao Yang; Misti L. Zamora; Min Hu; Yun Lin; Jianfei Peng; Song Guo; Jingjing Meng; Jianjun Li; Chunlei Cheng; Tafeng Hu; Yanqin Ren; Yuesi Wang; Jian Gao; Junji Cao; Zhisheng An; Weijian Zhou; Guohui Li; Jiayuan Wang; Pengfei Tian; Wilmarie Marrero-Ortiz; Jeremiah Secrest; Zhuofei Du; Jing Zheng; Dongjie Shang; Limin Zeng; Min Shao; Weigang Wang

Significance Exceedingly high levels of fine particulate matter (PM) occur frequently in China, but the mechanism of severe haze formation remains unclear. From atmospheric measurements in two Chinese megacities and laboratory experiments, we show that the oxidation of SO2 by NO2 occurs efficiently in aqueous media under two polluted conditions: first, during the formation of the 1952 London Fog via in-cloud oxidation; and second, on fine PM with NH3 neutralization during severe haze in China. We suggest that effective haze mitigation is achievable by intervening in the sulfate formation process with NH3 and NO2 emission control measures. Hence, our results explain the outstanding sulfur problem during the historic London Fog formation and elucidate the chemical mechanism of severe haze in China. Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments

Jianfei Peng; Min Hu; Song Guo; Zhuofei Du; Jing Zheng; Dongjie Shang; Misti L. Zamora; Limin Zeng; Min Shao; Yusheng Wu; Jun Zheng; Yuan Wang; Crystal R. Glen; Don R. Collins; Mario J. Molina; Renyi Zhang

Significance Although black carbon (BC) represents a key short-lived climate forcer, its direct radiative forcing remains highly uncertain. The available results from available studies of absorption enhancement of BC particles during atmospheric aging are conflicting. Using a novel environmental chamber method, we have, for the first time to our knowledge, quantified the aging and variation in the optical properties of BC particles under ambient urban conditions representative of developed and developing countries. Our results indicate that BC under polluted urban environments could contribute significantly to both pollution development and large positive radiative forcing, implying that reduction of BC emissions under polluted environments achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries. Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.


Science of The Total Environment | 2017

New particle formation in China: Current knowledge and further directions

Zhibin Wang; Zhijun Wu; D. L. Yue; Dongjie Shang; Song Guo; Junying Sun; Aijun Ding; Lin Wang; Jingkun Jiang; Hai Guo; Jian Gao; Hing Cho Cheung; Lidia Morawska; Melita Keywood; Min Hu

New particle formation (NPF) studies have been conducted in China since 2004. Formation of new atmospheric aerosol particles has been observed to take place in diverse environments, even under the circumstances of high pre-existing particle loading, challenging the traditional and present understanding of the physicochemical nucleation mechanisms, which have been proposed based on the investigations in clean environments and under laboratory experimental conditions. This paper summarizes the present status and gaps in understanding NPF in China and discusses the main directions opening for future research.


Science of The Total Environment | 2016

Insights into a dust event transported through Beijing in spring 2012: Morphology, chemical composition and impact on surface aerosols.

Wei Hu; Hongya Niu; Daizhou Zhang; Zhijun Wu; Chen Chen; Yusheng Wu; Dongjie Shang; Min Hu

Multiple approaches were used to investigate the evolution of surface aerosols in Beijing during the passage of a dust event at high altitude, which was from the Gobi areas of southern Mongolia and covered a wide range of North China. Single particle analysis with electron microscope showed that the majority of coarse particles were mineral ones, and most of them were in the size range of 1-7μm with a peak of number concentration at about 3.5μm. Based on elemental composition and morphology, the mineral particles could be classified into several groups, including Si-rich (71%), Ca-rich (15%), Fe-rich (6%), and halite-rich (2%), etc., and they were the main contributors to the aerosol optical depth as the dust occurred. The size distributions of surface aerosols were significantly affected by the dust intrusion. The average number concentration of accumulation mode particles during the event was about 400cm(-3), which was much lower than that in heavily polluted days (6300cm(-3)). At the stage of floating dust, the number concentration of accumulation mode particles decreased, and coarse particles contributed to total volume concentration of particulate matter as much as 90%. The accumulation mode particles collected in this stage were mostly in the size range of 0.2-0.5μm, and were rectangular or spherical. They were considered to be particles consisting of ammonium sulfate. New particle formation (NPF) was observed around noon in the three days during the dust event, indicating that the passage of the dust was probably favorable for NPF.


Atmospheric Chemistry and Physics | 2017

Aging and hygroscopicity variation of black carbon particles in Beijing measured by a quasi-atmospheric aerosol evolution study (QUALITY) chamber

Jianfei Peng; Min Hu; Song Guo; Zhuofei Du; Dongjie Shang; Jing Zheng; Jun Zheng; Limin Zeng; Min Shao; Yusheng Wu; Don Colllins; Renyi Zhang

Measurements of ageing and hygroscopicity variation of black carbon (BC) particles in Beijing were conducted using a 1.2 m3 quasi-atmospheric aerosol evolution study (QUALITY) chamber, which consisted of a bottom flow chamber through which ambient air was pulled continuously and an upper reaction chamber where ageing of BC particles occurred. Within the reaction chamber, transmission of the solar ultraviolet irradiation was approximately 50–60 %, wall loss of primary gaseous pollutants was negligible, and BC exhibited a half-lifetime of about 3–7 h. Typically, equilibrium for the primary gases, temperature and relative humidity between the reaction chamber and ambient air was established within 1 h. Rapid growth of BC particles occurred, with an average total growth of 77± 33 nm and average growth rate of 26± 11 nm h−1. Secondary organic aerosols (SOA) accounted for more than 90 % of the coating mass. The O /C ratio of SOA was 0.5, lower than the ambient level. The hygroscopic growth factor of BC particles decreased slightly with an initial thin coating layer because of BC reconstruction, but subsequently increased to 1.06–1.08 upon further ageing. The κ (kappa) values for BC particles and coating materials were calculated as 0.035 and 0.040 at the subsaturation and supersaturation conditions, respectively, indicating low hygroscopicity of coated SOA on BC particles. Hence, our results indicate that initial photochemical ageing of BC particles leads to considerable modifications to morphology and optical properties but does not appreciably alter the particle hygroscopicity in Beijing.


Science of The Total Environment | 2017

Chemical and physical properties of biomass burning aerosols and their CCN activity: A case study in Beijing, China.

Zhijun Wu; Jing Zheng; Yu Wang; Dongjie Shang; Zhoufei Du; Yuanhang Zhang; Min Hu

Biomass burning emits large amounts of both trace gases and particles into the atmosphere. It plays a profound role in regional air quality and climate change. In the present study, an intensive campaign was carried out at an urban site in Beijing, China, in June 2014, which covered the winter wheat harvest season over the North China Plain (NCP). Meanwhile, two evident biomass-burning events were observed. A clear burst in ultrafine particles (below 100nm in diameter, PM1) and subsequent particle growth took place during the events. With the growth of the ultrafine particles, the organic fraction of PM1 increased significantly. The ratio of oxygen to carbon (O:C), which had an average value of 0.23±0.04, did not show an obvious enhancement, indicating that a significant chemical aging process of the biomass-burning aerosols was not observed during the course of events. This finding might have been due to the fact that the biomass-burning events occurred in the late afternoon and grew during the nighttime, which is associated with a low atmospheric oxidation capacity. On average, organics and black carbon (BC) were dominant in the biomass-burning aerosols, accounting for 60±10% and 18±3% of PM1. The high organic and BC fractions led to a significant suppression of particle hygroscopicity. Comparisons among hygroscopicity tandem differential mobility analyzer (HTDMA)-derived, cloud condensation nuclei counter (CCNc)-derived, and aerosol mass spectrometer-based hygroscopicity parameter (κ) values were consistent. The mean κ values of biomass-burning aerosols derived from both HTDMA and CCNc measurements were approximately 0.1, regardless of the particle size, indicating that the biomass-burning aerosols were less active. The burst in particle count during the biomass-burning events resulted in an increased number of cloud condensation nuclei (CCN) at supersaturation (SS)=0.2-0.8%.


Journal of Environmental Sciences-china | 2017

Potential of secondary aerosol formation from Chinese gasoline engine exhaust

Zhuofei Du; Min Hu; Jianfei Peng; Song Guo; Rong Zheng; Jing Zheng; Dongjie Shang; Yanhong Qin; He Niu; Mengren Li; Yudong Yang; Sihua Lu; Yusheng Wu; Min Shao; Shijin Shuai

Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds (VOCs). However, little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4-5hr simulation, which was estimated to represent more than 10days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol (SOA) production was 426±85mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China.


Atmospheric Chemistry and Physics | 2017

Online gas and particle phase measurements of organosulfates, organosulfonates and nitrooxyorganosulfates in Beijing utilizing a FIGAERO ToF-CIMS

Michael Le Breton; Yujue Wang; Åsa M. Hallquist; Ravi Kant Pathak; Jing Zheng; Yudong Yang; Dongjie Shang; Marianne Glasius; Thomas J. Bannan; Qianyun Liu; Chak Keung Chan; Carl J. Percival; Wenfei Zhu; Shengrong Lou; David Topping; Yuchen Wang; Jian Zhen Yu; Keding Lu; Song Guo; Min Hu; Mattias Hallquist

A time-of-flight chemical ionization mass spectrometer (CIMS) utilizing the Filter Inlet for Gas and Aerosol (FIGAERO) was deployed at a regional site 40 km north-west of Beijing and successfully identified and measured 17 sulfur-containing organics (SCOs are organo/nitrooxy organosulfates and sulfonates) with biogenic and anthropogenic precursors. The SCOs were quantified using laboratory-synthesized standards of lactic acid sulfate and nitrophenol organosulfate (NP OS). The variation in field observations was confirmed by comparison to offline measurement techniques (orbitrap and high-performance liquid chromatography, HPLC) using daily averages. The mean total (of the 17 identified by CIMS) SCO particle mass concentration was 210± 110 ng m−3 and had a maximum of 540 ng m−3, although it contributed to only 2± 1 % of the organic aerosol (OA). The CIMS identified a persistent gasphase presence of SCOs in the ambient air, which was further supported by separate vapour-pressure measurements of NP OS by a Knudsen Effusion Mass Spectrometer (KEMS). An increase in relative humidity (RH) promoted partitioning of SCO to the particle phase, whereas higher temperatures favoured higher gas-phase concentrations. Biogenic emissions contributed to only 19 % of total SCOs measured in this study. Here, C10H16NSO7, a monoterpenederived SCO, represented the highest fraction (10 %) followed by an isoprene-derived SCO. The anthropogenic SCOs with polycyclic aromatic hydrocarbon (PAH) and aromatic precursors dominated the SCO mass loading (51 %) with C11H11SO7, derived from methyl naphthalene oxidation, contributing to 40 ng m−3 and 0.3 % of the OA mass. Anthropogenic-related SCOs correlated well with benzene, although their abundance depended highly on the photochemical age of the air mass, tracked using the ratio between pinonic acid and its oxidation product, acting as a qualitative Published by Copernicus Publications on behalf of the European Geosciences Union. 10356 M. Le Breton et al.: Online gasand particle-phase measurements of sulfur containing organics in China photochemical clock. In addition to typical anthropogenic and biogenic precursors the biomass-burning precursor nitrophenol (NP) provided a significant level of NP OS. It must be noted that the contribution analysis here is only representative of the detected SCOs. There are likely to be many more SCOs present which the CIMS has not identified. Gasand particle-phase measurements of glycolic acid suggest that partitioning towards the particle phase promotes glycolic acid sulfate production, contrary to the current formation mechanism suggested in the literature. Furthermore, the HSO4·H2SO−4 cluster measured by the CIMS was utilized as a qualitative marker for acidity and indicates that the production of total SCOs is efficient in highly acidic aerosols with high SO2− 4 and organic content. This dependency becomes more complex when observing individual SCOs due to variability of specific VOC precursors.


Acta Chimica Sinica | 2016

Mechanism of New Particle Formation and Growth as well as Environmental Effects under Complex Air Pollution in China

Min Hu; Dongjie Shang; Song Guo; Zhijun Wu

New particle formation (NPF) and its subsequent growth plays a key role in air quality and climate change at regional and global scales. Especially under complex air pollution in China, nucleation and growth can be highly efficient, claimed to be a main source of cloud condensation nuclei (CCN) and an important cause of secondary aerosol pollution. Cur- rently, the mechanism of particle formation and growth as well as its environmental effects are still poorly understood. Thereby, fully understanding of the atmospheric nucleation and subsequent growth still presents a big challenge to atmos- pheric chemistry researches. This study reviews the current results from studies on mechanisms and environmental effects of atmospheric nucleation and growth. We summarize that traditional nucleation theories such as binary nucleation of H2SO4-H2O, ternary nucleation of H2SO4-NH3-H2O, ion-induced nucleation are not capable in explaining new particle for- mation under complex air pollution, while newly proposed mechanisms such as organic acids and amine induced nucleation were not verified because of technique limitation. We propose that the future researches should focus on identifying the key chemical precursor response for driving nucleation and initial and subsequent growth, and understand the physical and chem- ical processing of new particle formation and growth. In particularly, application and development of novel techniques, such as APi-TOF-CIMS, PSM, Nano-HTDMA in new particle formation study is very important. Also, future researches should establish whole process tracking on new particle formation, from precursor, nucleation, growth till the environmental effects, by integrating field observation, chamber simulation, and modelling. Currently, the mechanism of highly efficient nucleation and rapid growth taking place under complex air pollution in China is urgently needed to be in-depth studied in order to im- prove our understanding of regional haze formation. This could be helpful to understand the similarity and difference in the nucleation mechanism between clean and polluted atmospheric environments. Keywords new particle formation; particle growth; transformation mechanism; environmental impact; complex air pollu- tion

Collaboration


Dive into the Dongjie Shang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge