Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dongjun Chung is active.

Publication


Featured researches published by Dongjun Chung.


PLOS Genetics | 2014

GPA: A statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation

Dongjun Chung; Can Yang; Cong Li; Joel Gelernter; Hongyu Zhao

Results from Genome-Wide Association Studies (GWAS) have shown that complex diseases are often affected by many genetic variants with small or moderate effects. Identifications of these risk variants remain a very challenging problem. There is a need to develop more powerful statistical methods to leverage available information to improve upon traditional approaches that focus on a single GWAS dataset without incorporating additional data. In this paper, we propose a novel statistical approach, GPA (Genetic analysis incorporating Pleiotropy and Annotation), to increase statistical power to identify risk variants through joint analysis of multiple GWAS data sets and annotation information because: (1) accumulating evidence suggests that different complex diseases share common risk bases, i.e., pleiotropy; and (2) functionally annotated variants have been consistently demonstrated to be enriched among GWAS hits. GPA can integrate multiple GWAS datasets and functional annotations to seek association signals, and it can also perform hypothesis testing to test the presence of pleiotropy and enrichment of functional annotation. Statistical inference of the model parameters and SNP ranking is achieved through an EM algorithm that can handle genome-wide markers efficiently. When we applied GPA to jointly analyze five psychiatric disorders with annotation information, not only did GPA identify many weak signals missed by the traditional single phenotype analysis, but it also revealed relationships in the genetic architecture of these disorders. Using our hypothesis testing framework, statistically significant pleiotropic effects were detected among these psychiatric disorders, and the markers annotated in the central nervous system genes and eQTLs from the Genotype-Tissue Expression (GTEx) database were significantly enriched. We also applied GPA to a bladder cancer GWAS data set with the ENCODE DNase-seq data from 125 cell lines. GPA was able to detect cell lines that are biologically more relevant to bladder cancer. The R implementation of GPA is currently available at http://dongjunchung.github.io/GPA/.


Molecular Cell | 2016

Metabolic Regulation of Gene Expression by Histone Lysine β-Hydroxybutyrylation

Zhongyu Xie; Di Zhang; Dongjun Chung; Zhanyun Tang; He Huang; Lunzhi Dai; Shankang Qi; Jing-Ya Li; Gozde Colak; Yue Chen; Chunmei Xia; Chao Peng; Hai Bin Ruan; Matt Kirkey; Danli Wang; Lindy Jensen; Oh Kwang Kwon; Sangkyu Lee; Scott D. Pletcher; Minjia Tan; David B. Lombard; Kevin P. White; Hongyu Zhao; Jia Li; Robert G. Roeder; Xiaoyong Yang; Yingming Zhao

Here we report the identification and verification of a β-hydroxybutyrate-derived protein modification, lysine β-hydroxybutyrylation (Kbhb), as a new type of histone mark. Histone Kbhb marks are dramatically induced in response to elevated β-hydroxybutyrate levels in cultured cells and in livers from mice subjected to prolonged fasting or streptozotocin-induced diabetic ketoacidosis. In total, we identified 44 histone Kbhb sites, a figure comparable to thexa0known number of histone acetylation sites. By ChIP-seq and RNA-seq analysis, we demonstrate that histone Kbhb is a mark enriched in active gene promoters and that the increased H3K9bhb levels that occur during starvation are associated with genes upregulated in starvation-responsive metabolic pathways. Histone β-hydroxybutyrylation thus represents a new epigenetic regulatory mark that couples metabolism to gene expression, offering axa0new avenue to study chromatin regulation and diverse functions of β-hydroxybutyrate in the context of important human pathophysiological states, including diabetes, epilepsy, and neoplasia.


Frontiers in Genetics | 2015

Implications of pleiotropy: challenges and opportunities for mining Big Data in biomedicine

Can Yang; Cong Li; Qian Wang; Dongjun Chung; Hongyu Zhao

Pleiotropy arises when a locus influences multiple traits. Rich GWAS findings of various traits in the past decade reveal many examples of this phenomenon, suggesting the wide existence of pleiotropic effects. What underlies this phenomenon is the biological connection among seemingly unrelated traits/diseases. Characterizing the molecular mechanisms of pleiotropy not only helps to explain the relationship between diseases, but may also contribute to novel insights concerning the pathological mechanism of each specific disease, leading to better disease prevention, diagnosis and treatment. However, most pleiotropic effects remain elusive because their functional roles have not been systematically examined. A systematic investigation requires availability of qualified measurements at multilayered biological processes (e.g., transcription and translation). The rise of Big Data in biomedicine, such as high-quality multi-omics data, biomedical imaging data and electronic medical records of patients, offers us an unprecedented opportunity to investigate pleiotropy. There will be a great need of computationally efficient and statistically rigorous methods for integrative analysis of these Big Data in biomedicine. In this review, we outline many opportunities and challenges in methodology developments for systematic analysis of pleiotropy, and highlight its implications on disease prevention, diagnosis and treatment.


Expert Review of Molecular Diagnostics | 2017

Genomics pipelines and data integration: challenges and opportunities in the research setting

Jeremy Davis-Turak; Sean M. Courtney; E. Starr Hazard; W. Bailey Glen; Willian A. da Silveira; Timothy Wesselman; Larry P. Harbin; Bethany J. Wolf; Dongjun Chung; Gary Hardiman

ABSTRACT Introduction: The emergence and mass utilization of high-throughput (HT) technologies, including sequencing technologies (genomics) and mass spectrometry (proteomics, metabolomics, lipids), has allowed geneticists, biologists, and biostatisticians to bridge the gap between genotype and phenotype on a massive scale. These new technologies have brought rapid advances in our understanding of cell biology, evolutionary history, microbial environments, and are increasingly providing new insights and applications towards clinical care and personalized medicine. Areas covered: The very success of this industry also translates into daunting big data challenges for researchers and institutions that extend beyond the traditional academic focus of algorithms and tools. The main obstacles revolve around analysis provenance, data management of massive datasets, ease of use of software, interpretability and reproducibility of results. Expert commentary: The authors review the challenges associated with implementing bioinformatics best practices in a large-scale setting, and highlight the opportunity for establishing bioinformatics pipelines that incorporate data tracking and auditing, enabling greater consistency and reproducibility for basic research, translational or clinical settings.


Genes | 2017

The Plasticizer Bisphenol A Perturbs the Hepatic Epigenome: A Systems Level Analysis of the miRNome

Ludivine Renaud; Willian A. da Silveira; E. Starr Hazard; Jonathan Simpson; Silvia Falcinelli; Dongjun Chung; Oliana Carnevali; Gary Hardiman

Ubiquitous exposure to bisphenol A (BPA), an endocrine disruptor (ED), has raised concerns for both human and ecosystem health. Epigenetic factors, including microRNAs (miRNAs), are key regulators of gene expression during cancer. The effect of BPA exposure on the zebrafish epigenome remains poorly characterized. Zebrafish represents an excellent model to study cancer as the organism develops a disease that resembles human cancer. Using zebrafish as a systems toxicology model, we hypothesized that chronic BPA-exposure impacts the miRNome in adult zebrafish and establishes an epigenome more susceptible to cancer development. After a 3 week exposure to 100 nM BPA, RNA from the liver was extracted to perform high throughput mRNA and miRNA sequencing. Differential expression (DE) analyses comparing BPA-exposed to control specimens were performed using established bioinformatics pipelines. In the BPA-exposed liver, 6188 mRNAs and 15 miRNAs were differently expressed (q ≤ 0.1). By analyzing human orthologs of the DE zebrafish genes, signatures associated with non-alcoholic fatty liver disease (NAFLD), oxidative phosphorylation, mitochondrial dysfunction and cell cycle were uncovered. Chronic exposure to BPA has a significant impact on the liver miRNome and transcriptome in adult zebrafish with the potential to cause adverse health outcomes including cancer.


PLOS Computational Biology | 2017

graph-GPA: A graphical model for prioritizing GWAS results and investigating pleiotropic architecture

Dongjun Chung; Hang J. Kim; Hongyu Zhao

Genome-wide association studies (GWAS) have identified tens of thousands of genetic variants associated with hundreds of phenotypes and diseases, which have provided clinical and medical benefits to patients with novel biomarkers and therapeutic targets. However, identification of risk variants associated with complex diseases remains challenging as they are often affected by many genetic variants with small or moderate effects. There has been accumulating evidence suggesting that different complex traits share common risk basis, namely pleiotropy. Recently, several statistical methods have been developed to improve statistical power to identify risk variants for complex traits through a joint analysis of multiple GWAS datasets by leveraging pleiotropy. While these methods were shown to improve statistical power for association mapping compared to separate analyses, they are still limited in the number of phenotypes that can be integrated. In order to address this challenge, in this paper, we propose a novel statistical framework, graph-GPA, to integrate a large number of GWAS datasets for multiple phenotypes using a hidden Markov random field approach. Application of graph-GPA to a joint analysis of GWAS datasets for 12 phenotypes shows that graph-GPA improves statistical power to identify risk variants compared to statistical methods based on smaller number of GWAS datasets. In addition, graph-GPA also promotes better understanding of genetic mechanisms shared among phenotypes, which can potentially be useful for the development of improved diagnosis and therapeutics. The R implementation of graph-GPA is currently available at https://dongjunchung.github.io/GGPA/.


Comparative and Functional Genomics | 2016

GPA-MDS: A Visualization Approach to Investigate Genetic Architecture among Phenotypes Using GWAS Results

Wei Wei; Paula S. Ramos; Kelly J. Hunt; Bethany J. Wolf; Gary Hardiman; Dongjun Chung

Genome-wide association studies (GWAS) have identified tens of thousands of genetic variants associated with hundreds of phenotypes and diseases, which have provided clinical and medical benefits to patients with novel biomarkers and therapeutic targets. Recently, there has been accumulating evidence suggesting that different complex traits share a common risk basis, namely, pleiotropy. Previously, a statistical method, namely, GPA (Genetic analysis incorporating Pleiotropy and Annotation), was developed to improve identification of risk variants and to investigate pleiotropic structure through a joint analysis of multiple GWAS datasets. While GPA provides a statistically rigorous framework to evaluate pleiotropy between phenotypes, it is still not trivial to investigate genetic relationships among a large number of phenotypes using the GPA framework. In order to address this challenge, in this paper, we propose a novel approach, GPA-MDS, to visualize genetic relationships among phenotypes using the GPA algorithm and multidimensional scaling (MDS). This tool will help researchers to investigate common etiology among diseases, which can potentially lead to development of common treatments across diseases. We evaluate the proposed GPA-MDS framework using a simulation study and apply it to jointly analyze GWAS datasets examining 18 unique phenotypes, which helps reveal the shared genetic architecture of these phenotypes.


Statistical Methods in Medical Research | 2018

Semi-supervised identification of cancer subgroups using survival outcomes and overlapping grouping information:

Wei Wei; Zequn Sun; Willian A. da Silveira; Zhenning Yu; Andrew B. Lawson; Gary Hardiman; Linda E. Kelemen; Dongjun Chung

Identification of cancer patient subgroups using high throughput genomic data is of critical importance to clinicians and scientists because it can offer opportunities for more personalized treatment and overlapping treatments of cancers. In spite of tremendous efforts, this problem still remains challenging because of low reproducibility and instability of identified cancer subgroups and molecular features. In order to address this challenge, we developed Integrative Genomics Robust iDentification of cancer subgroups (InGRiD), a statistical approach that integrates information from biological pathway databases with high-throughput genomic data to improve the robustness for identification and interpretation of molecularly-defined subgroups of cancer patients. We applied InGRiD to the gene expression data of high-grade serous ovarian cancer from The Cancer Genome Atlas and the Australian Ovarian Cancer Study. The results indicate clear benefits of the pathway-level approaches over the gene-level approaches. In addition, using the proposed InGRiD framework, we also investigate and address the issue of gene sharing among pathways, which often occurs in practice, to further facilitate biological interpretation of key molecular features associated with cancer progression. The R package “InGRiD” implementing the proposed approach is currently available in our research group GitHub webpage (https://dongjunchung.github.io/INGRID/).


PLOS ONE | 2018

ShinyGPA: An interactive visualization toolkit for investigating pleiotropic architecture using GWAS datasets

Emma Kortemeier; Paula S. Ramos; Kelly J. Hunt; Hang J. Kim; Gary Hardiman; Dongjun Chung

In spite of accumulating evidence suggesting that different complex traits share a common risk basis, namely pleiotropy, effective investigation of pleiotropic architecture still remains challenging. In order to address this challenge, we developed ShinyGPA, an interactive and dynamic visualization toolkit to investigate pleiotropic structure. ShinyGPA requires only the summary statistics from genome-wide association studies (GWAS), which reduces the burden on researchers using this tool. ShinyGPA allows users to effectively investigate genetic relationships among phenotypes using a flexible low-dimensional visualization and an intuitive user interface. In addition, ShinyGPA provides joint association mapping functionality that can facilitate biological understanding of the pleiotropic architecture. We analyzed GWAS summary statistics for 12 phenotypes using ShinyGPA and obtained visualization results and joint association mapping results that are well supported by the literature. The visualization produced by ShinyGPA can also be used as a hypothesis generating tool for relationships between phenotypes, which might also be used to improve the design of future genetic studies. ShinyGPA is currently available at https://dongjunchung.github.io/GPA/.


Genes | 2018

miRmapper: A Tool for Interpretation of miRNA–mRNA Interaction Networks

Willian A. da Silveira; Ludivine Renaud; Jonathan Simpson; William B. Glen; Edward. Hazard; Dongjun Chung; Gary Hardiman

It is estimated that 30% of all genes in the mammalian cells are regulated by microRNA (miRNAs). The most relevant miRNAs in a cellular context are not necessarily those with the greatest change in expression levels between healthy and diseased tissue. Differentially expressed (DE) miRNAs that modulate a large number of messenger RNA (mRNA) transcripts ultimately have a greater influence in determining phenotypic outcomes and are more important in a global biological context than miRNAs that modulate just a few mRNA transcripts. Here, we describe the development of a tool, “miRmapper”, which identifies the most dominant miRNAs in a miRNA–mRNA network and recognizes similarities between miRNAs based on commonly regulated mRNAs. Using a list of miRNA–target gene interactions and a list of DE transcripts, miRmapper provides several outputs: (1) an adjacency matrix that is used to calculate miRNA similarity utilizing the Jaccard distance; (2) a dendrogram and (3) an identity heatmap displaying miRNA clusters based on their effect on mRNA expression; (4) a miRNA impact table and (5) a barplot that provides a visual illustration of this impact. We tested this tool using nonmetastatic and metastatic bladder cancer cell lines and demonstrated that the most relevant miRNAs in a cellular context are not necessarily those with the greatest fold change. Additionally, by exploiting the Jaccard distance, we unraveled novel cooperative interactions between miRNAs from independent families in regulating common target mRNAs; i.e., five of the top 10 miRNAs act in synergy.

Collaboration


Dive into the Dongjun Chung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary Hardiman

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Willian A. da Silveira

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Can Yang

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Bethany J. Wolf

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Hang J. Kim

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew B. Lawson

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

E. Starr Hazard

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge