Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dongling Yang is active.

Publication


Featured researches published by Dongling Yang.


Nature Nanotechnology | 2007

Intrinsic peroxidase-like activity of ferromagnetic nanoparticles

Lizeng Gao; Jie Zhuang; Leng Nie; Jinbin Zhang; Yu Zhang; Ning Gu; Taihong Wang; Jing Feng; Dongling Yang; Sarah Perrett; Xiyun Yan

Nanoparticles containing magnetic materials, such as magnetite (Fe3O4), are particularly useful for imaging and separation techniques. As these nanoparticles are generally considered to be biologically and chemically inert, they are typically coated with metal catalysts, antibodies or enzymes to increase their functionality as separation agents. Here, we report that magnetite nanoparticles in fact possess an intrinsic enzyme mimetic activity similar to that found in natural peroxidases, which are widely used to oxidize organic substrates in the treatment of wastewater or as detection tools. Based on this finding, we have developed a novel immunoassay in which antibody-modified magnetite nanoparticles provide three functions: capture, separation and detection. The stability, ease of production and versatility of these nanoparticles makes them a powerful tool for a wide range of potential applications in medicine, biotechnology and environmental chemistry.


Nature Nanotechnology | 2012

Magnetoferritin nanoparticles for targeting and visualizing tumour tissues

Kelong Fan; Changqian Cao; Yongxin Pan; Di Lu; Dongling Yang; Jing Feng; Lina Song; Minmin Liang; Xiyun Yan

Engineered nanoparticles have been used to provide diagnostic, therapeutic and prognostic information about the status of disease. Nanoparticles developed for these purposes are typically modified with targeting ligands (such as antibodies, peptides or small molecules) or contrast agents using complicated processes and expensive reagents. Moreover, this approach can lead to an excess of ligands on the nanoparticle surface, and this causes non-specific binding and aggregation of nanoparticles, which decreases detection sensitivity. Here, we show that magnetoferritin nanoparticles (M-HFn) can be used to target and visualize tumour tissues without the use of any targeting ligands or contrast agents. Iron oxide nanoparticles are encapsulated inside a recombinant human heavy-chain ferritin (HFn) protein shell, which binds to tumour cells that overexpress transferrin receptor 1 (TfR1). The iron oxide core catalyses the oxidation of peroxidase substrates in the presence of hydrogen peroxide to produce a colour reaction that is used to visualize tumour tissues. We examined 474 clinical specimens from patients with nine types of cancer and verified that these nanoparticles can distinguish cancerous cells from normal cells with a sensitivity of 98% and specificity of 95%.


Analytical Chemistry | 2013

Fe3O4 Magnetic Nanoparticle Peroxidase Mimetic-Based Colorimetric Assay for the Rapid Detection of Organophosphorus Pesticide and Nerve Agent

Minmin Liang; Kelong Fan; Yong Pan; Hui Jiang; Fei Wang; Dongling Yang; Di Lu; Jing Feng; Jianjun Zhao; Liu Yang; Xiyun Yan

Rapid and sensitive detection methods are in urgent demand for the screening of extensively used organophosphorus pesticides and highly toxic nerve agents for their neurotoxicity. In this study, we developed a novel Fe(3)O(4) magnetic nanoparticle (MNP) peroxidase mimetic-based colorimetric method for the rapid detection of organophosphorus pesticides and nerve agents. The detection assay is composed of MNPs, acetylcholinesterase (AChE), and choline oxidase (CHO). The enzymes AChE and CHO catalyze the formation of H(2)O(2) in the presence of acetylcholine, which then activates MNPs to catalyze the oxidation of colorimetric substrates to produce a color reaction. After incubation with the organophosphorus neurotoxins, the enzymatic activity of AChE was inhibited and produced less H(2)O(2), resulting in a decreased catalytic oxidation of colorimetric substrates over MNP peroxidase mimetics, accompanied by a drop in color intensity. Three organophosphorus compounds were tested on the assay: acephate and methyl-paraoxon as representative organophosphorus pesticides and the nerve agent Sarin. The novel assay displayed substantial color change after incubation in organophosphorus neurotoxins in a concentration-dependent manner. As low as 1 nM Sarin, 10 nM methyl-paraoxon, and 5 μM acephate are easily detected by the novel assay. In conclusion, by employing the peroxidase-mimicking activity of MNPs, the developed colorimetric assay has the potential of becoming a screening tool for the rapid and sensitive assessment of the neurotoxicity of an overwhelming number of organophosphate compounds.


ChemBioChem | 2006

Carbon nanotube delivery of the GFP gene into mammalian cells.

Lizeng Gao; Leng Nie; Taihong Wang; Yujun Qin; Zhixin Guo; Dongling Yang; Xiyun Yan

Exogenous-gene expression and manipulation in mammalian cells has become a mainstay of biomedical research. Consequently, improving methods for efficient gene transfer to a broad range of cell types is of great interest and remains a high priority. Several classes of transfection methods have been developed, which include traditional cationic moleculemediated agents, such as Lipofectamine 20000 and FuGENE 6, viral-vector systems, and the “gene gun” approach. With the rapid development of nanobiotechnology, a variety of new materials, such as gold nanoparticles, silica nanoparticles, polymers, nanogels, and dendrimers have been investigated as biocompatible transporters. Recently, carbon nanotube—a well-studied nanomaterial— have been investigated for their ability to interact with and affect living systems. For instance, carbon nanotubes have been found to enhance DNA amplification in PCR and affect the growth pattern of neurons. Pantarotto et al. have reported the internalization of fluorescein isothiocynate (FITC) labeled nanotubes and nanotube delivery of the gene that encodes b-galactosidase into cells, with no apparent toxic effects. Kam et al. have studied the mechanism of protein-conjugated carbon nanotube uptake into cells via the endocytic pathway. Here we present our finding that amino-functionalized multiwalled carbon nanotubes (NH2-MWCNTs) are able to interact with plasmid DNA and deliver the green fluorescence protein (GFP) gene into cultured human cells. Our data strongly suggest that carbon nanotubes can be considered as a new carrier for the delivery of biomolecules, such as DNA, proteins, and peptides into mammalian cells. Therefore, this novel system might have potential applications in biology and therapy, including vaccine and gene delivery. In order to increase their biocompatibility, we introduced amino-, carboxyl-, hydroxyl-, and alkyl groups onto the surface of MWCNTs. COOH-MWCNTs were first prepared by nitric / sulfuric acid oxidation, and then NH2and CH3CH2CH2-groups were added. Finally, we obtained four types of MWCNTs with different chemical groups on their surface. Functionalized MWCNTs were observed under an electron microscope and were found to be 60–70 nm in diameter and 1–2 mm in length. Although we did not find a significant difference in size between the NH2-MWCNTs and NH2-MWCNT–DNAs, the latter appeared to have the tendency to aggregate (Figure 1B). In order to test the DNA-binding ability of amino-, carboxyl-, hydroxyl-, and alkyl-group-modified MWCNTs, we incubated them with pEGFPN1-plasmid DNA, and MWCNT–DNA mixtures were analyzed by agarose-gel electrophoresis. The results show that only NH2-MWCNT bound to DNA (Figure 2); since the NH2-MWCNT–DNA complex was too big to run into the


Proceedings of the National Academy of Sciences of the United States of America | 2012

CD146, an epithelial-mesenchymal transition inducer, is associated with triple-negative breast cancer

Qiqun Zeng; Weidong Li; Di Lu; Zhenzhen Wu; Hongxia Duan; Yongting Luo; Jing Feng; Dongling Yang; Li Fu; Xiyun Yan

The epithelial-mesenchymal transition (EMT) plays an important role in breast cancer metastasis, especially in the most aggressive and lethal subtype, “triple-negative breast cancer” (TNBC). Here, we report that CD146 is a unique activator of EMTs and significantly correlates with TNBC. In epithelial breast cancer cells, overexpression of CD146 down-regulated epithelial markers and up-regulated mesenchymal markers, significantly promoted cell migration and invasion, and induced cancer stem cell-like properties. We further found that RhoA pathways positively regulated CD146-induced EMTs via the key EMT transcriptional factor Slug. An orthotopic breast tumor model demonstrated that CD146-overexpressing breast tumors showed a poorly differentiated phenotype and displayed increased tumor invasion and metastasis. We confirmed these findings by conducting an immunohistochemical analysis of 505 human primary breast tumor tissues and found that CD146 expression was significantly associated with high tumor stage, poor prognosis, and TNBC. CD146 was expressed at abnormally high levels (68.9%), and was strongly associated with E-cadherin down-regulation in TNBC samples. Taken together, these findings provide unique evidence that CD146 promotes breast cancer progression by induction of EMTs via the activation of RhoA and up-regulation of Slug. Thus, CD146 could be a therapeutic target for breast cancer, especially for TNBC.


Proceedings of the National Academy of Sciences of the United States of America | 2014

H-ferritin–nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection

Minmin Liang; Kelong Fan; Meng Zhou; Demin Duan; Jiyan Zheng; Dongling Yang; Jing Feng; Xiyun Yan

Significance Nanoparticles capable of specifically binding to target cells and delivering high doses of therapeutic drugs with optimized safety profiles are much sought after in the nanomedical field. Here, we developed a natural H-ferritin (HFn) nanocarrier that specifically delivered a high concentration of the therapeutic drug doxorubicin (Dox) to tumor cells and significantly inhibited tumor growth with a single-dose treatment while also showing excellent biocompatibility and safety profiles in murine cancer models. Compared with the clinically approved liposomal Dox (Doxil), HFn-Dox exhibited longer median survival times and lower toxicity when administered at the same dose in all tumor models studied. An ideal nanocarrier for efficient drug delivery must be able to target specific cells and carry high doses of therapeutic drugs and should also exhibit optimized physicochemical properties and biocompatibility. However, it is a tremendous challenge to engineer all of the above characteristics into a single carrier particle. Here, we show that natural H-ferritin (HFn) nanocages can carry high doses of doxorubicin (Dox) for tumor-specific targeting and killing without any targeting ligand functionalization or property modulation. Dox-loaded HFn (HFn-Dox) specifically bound and subsequently internalized into tumor cells via interaction with overexpressed transferrin receptor 1 and released Dox in the lysosomes. In vivo in the mouse, HFn-Dox exhibited more than 10-fold higher intratumoral drug concentration than free Dox and significantly inhibited tumor growth after a single-dose injection. Importantly, HFn-Dox displayed an excellent safety profile that significantly reduced healthy organ drug exposure and improved the maximum tolerated dose by fourfold compared with free Dox. Moreover, because the HFn nanocarrier has well-defined morphology and does not need any ligand modification or property modulation it can be easily produced with high purity and yield, which are requirements for drugs used in clinical trials. Thus, these unique properties make the HFn nanocage an ideal vehicle for efficient anticancer drug delivery.


Blood | 2012

CD146 is a coreceptor for VEGFR-2 in tumor angiogenesis

Tianxia Jiang; Hongxia Duan; Yongting Luo; Qiqun Zeng; Kelong Fan; Huiwen Yan; Di Lu; Zhongde Ye; Junfeng Hao; Jing Feng; Dongling Yang; Xiyun Yan

CD146 is a novel endothelial biomarker and plays an essential role in angiogenesis; however, its role in the molecular mechanism underlying angiogenesis remains poorly understood. In the present study, we show that CD146 interacts directly with VEGFR-2 on endothelial cells and at the molecular level and identify the structural basis of CD146 binding to VEGFR-2. In addition, we show that CD146 is required in VEGF-induced VEGFR-2 phosphorylation, AKT/p38 MAPKs/NF-κB activation, and thus promotion of endothelial cell migration and microvascular formation. Furthermore, we show that anti-CD146 AA98 or CD146 siRNA abrogates all VEGFR-2 activation induced by VEGF. An in vivo angiogenesis assay showed that VEGF-promoted microvascular formation was impaired in the endothelial conditional knockout of CD146 (CD146(EC-KO)). Our animal experiments demonstrated that anti-CD146 (AA98) and anti-VEGF (bevacizumab) have an additive inhibitory effect on xenografted human pancreatic and melanoma tumors. The results of the present study suggest that CD146 is a new coreceptor for VEGFR-2 and is therefore a promising target for blocking tumor-related angiogenesis.


Cell Research | 2006

Knockdown of CD146 reduces the migration and proliferation of human endothelial cells

Yanyong Kang; Fengcai Wang; Jing Feng; Dongling Yang; Xu Yang; Xiyun Yan

Our previous study has demonstrated that CD146 molecule is a biomarker on vascular endothelium, which is involved in angiogenesis and tumor growth. However the mechanism behind is not clear. Here we have for the first time developed a novel CD146 blockade system using CD146 siRNA to study its function on endothelial cells. Our data showed that CD146 siRNA specifically blocked the expression of CD146 on both mRNA and protein levels, leading to the significant suppression of HUVEC proliferation, adhesion and migration. These results demonstrate that CD146 plays a key role in vascular endothelial cell activity and angiogenesis, and CD146 siRNA can be used as a new inhibitor for anti-angiogenesis therapy.


The International Journal of Biochemistry & Cell Biology | 2009

Endothelial CD146 is required for in vitro tumor-induced angiogenesis: the role of a disulfide bond in signaling and dimerization.

Chaogu Zheng; Yijun Qiu; Qiqun Zeng; Ying Zhang; Di Lu; Dongling Yang; Jing Feng; Xiyun Yan

Tumor angiogenesis, induced by tumor-secreted pro-angiogenic factors, is an essential process for cancer development and metastasis. CD146 is identified as an endothelial cell adhesion molecule and implicated in blood vessel formation, however, its exact role in angiogenesis, particularly tumor angiogenesis, and its potential function of mediating downstream signaling are still unclear. In present study, we evidenced that silencing endogenous endothelial CD146 by RNAi significantly impaired hepatocarcinoma cell secretions-promoted tubular morphogenesis and -enhanced motility of endothelial cells. Biochemical studies revealed that CD146 was required for the activation of p38/IKK/NF kappaB signaling cascade and up-regulation of NF kappaB downstream pro-angiogenic genes, notably IL-8, ICAM-1 and MMP9, in response to tumor secretions. Interestingly, specific anti-CD146 mAb AA98, which bound a conformational epitope depending on C452-C499 disulfide bond, could abrogate NF kappaB activation and tumor angiogenesis, whereas another anti-CD146 mAb AA1 recognizing a linear epitope containing aa50-54 did not have such effects. Further structure-function analysis identified that C452-C499 disulfide bond within the fifth extracellular Ig domain was indispensible for CD146-mediated signaling and tube formation. Moreover, dimerization of CD146, which was enhanced by tumor secretions and suppressed by AA98 but not AA1, also relied on C452 and C499. Together, this study for the first time uncovered the pro-angiogenic role of CD146 and also pinpointed the key structural basis responsible for its signaling function and dimerization. These findings also suggested that CD146 might serve as not just a cell adhesion molecule but also a membrane signal receptor in tumor-induced angiogenesis.


Oncogene | 2012

Recognition of CD146 as an ERM-binding protein offers novel mechanisms for melanoma cell migration

Yongting Luo; Chaogu Zheng; Jinbin Zhang; Di Lu; Shu Xing; Jing Feng; Dongling Yang; Xiyun Yan

Tumor cell migration is a well-orchestrated multistep process that drives cancer development and metastasis. Previous data indicated that CD146 expression correlates with malignant progression and metastatic potential of human melanoma cells. However, the exact molecular mechanism of how CD146 promotes melanoma cell migration still remains poorly understood. Here, we report that CD146 physically interacts with actin-linking ezrin–radixin–moesin (ERM) proteins and recruits ERM proteins to cell protrusions, promoting the formation and elongation of microvilli. Moreover, CD146-promoted melanoma cell migration is linked to RhoA activation and ERM phosphorylation. CD146 recruits Rho guanine nucleotide dissociation inhibitory factors 1 (RhoGDI1) through ERM proteins and thus sequesters RhoGDI1 from RhoA, which leads to upregulated RhoA activity and increased melanoma cell motility. CD146-activated RhoA also promotes further ERM phosphorylation and activation through Rho-phosphatidylinositol-4-phosphate-5-kinase-phosphatidylinositol 4,5-biphosphate pathway, which reinforces CD146/ERM association. Thus, our results provide a mechanistic basis to understand the role of CD146 in regulating human melanoma cell motility.

Collaboration


Dive into the Dongling Yang's collaboration.

Top Co-Authors

Avatar

Xiyun Yan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jing Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Di Lu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yongting Luo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lina Song

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongxia Duan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kelong Fan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chaogu Zheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qiqun Zeng

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge