Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dongquan Chen is active.

Publication


Featured researches published by Dongquan Chen.


Human Molecular Genetics | 2013

LRRK2 secretion in exosomes is regulated by 14-3-3

Kyle B. Fraser; Mark S. Moehle; João Paulo Lima Daher; Philip J. Webber; Jeri Y. Williams; Carrie A. Stewart; Talene A. Yacoubian; Rita M. Cowell; Terje Dokland; Tong Ye; Dongquan Chen; Gene P. Siegal; Robert A. Galemmo; Elpida Tsika; Darren J. Moore; David G. Standaert; Kyoko Kojima; James A. Mobley; Andrew B. West

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset Parkinsons disease (PD). Emerging evidence suggests a role for LRRK2 in the endocytic pathway. Here, we show that LRRK2 is released in extracellular microvesicles (i.e. exosomes) from cells that natively express LRRK2. LRRK2 localizes to collecting duct epithelial cells in the kidney that actively secrete exosomes into urine. Purified urinary exosomes contain LRRK2 protein that is both dimerized and phosphorylated. We provide a quantitative proteomic profile of 1673 proteins in urinary exosomes and find that known LRRK2 interactors including 14-3-3 are some of the most abundant exosome proteins. Disruption of the 14-3-3 LRRK2 interaction with a 14-3-3 inhibitor or through acute LRRK2 kinase inhibition potently blocks LRRK2 release in exosomes, but familial mutations in LRRK2 had no effect on secretion. LRRK2 levels were overall comparable but highly variable in urinary exosomes derived from PD cases and age-matched controls, although very high LRRK2 levels were detected in some PD affected cases. We further characterized LRRK2 exosome release in neurons and macrophages in culture, and found that LRRK2-positive exosomes circulate in cerebral spinal fluid (CSF). Together, these results define a pathway for LRRK2 extracellular release, clarify one function of the LRRK2 14-3-3 interaction and provide a foundation for utilization of LRRK2 as a biomarker in clinical trials.


Scientific Reports | 2015

S100A4 promotes pancreatic cancer progression through a dual signaling pathway mediated by Src and focal adhesion kinase.

Pulin Che; Youfeng Yang; Xiaosi Han; Meng Hu; Jeffery Sellers; Angelina I. Londoño-Joshi; Guo-Qiang Cai; Donald J. Buchsbaum; John D. Christein; Qinjiu Tang; Dongquan Chen; Qianjun Li; William E. Grizzle; Yin Ying Lu; Qiang Ding

S100A4 expression is associated with poor clinical outcomes of patients with pancreatic cancer. The effects of loss or gain of S100A4 were examined in pancreatic cancer cell lines. S100A4 downregulation remarkably reduces cell migration and invasion, inhibits proliferation, and induces apoptosis in pancreatic tumor cells. S100A4 downregulation results in significant cell growth inhibition and apoptosis in response to TGF-β1, supporting a non-canonical role of S100A4 in pancreatic cancer. The role of S100A4 in tumor progression was studied by using an orthotopic human pancreatic cancer xenograft mouse model. Tumor mass is remarkably decreased in animals injected with S100A4-deficient pancreatic tumor cells. P27Kip1 expression and cleaved caspase-3 are increased, while cyclin E expression is decreased, in S100A4-deficient pancreatic tumors in vivo. S100A4-deficient tumors have lower expression of vascular endothelial growth factor, suggesting reduced angiogenesis. Biochemical assays revealed that S100A4 activates Src and focal adhesion kinase (FAK) signaling events, and inhibition of both kinases is required to maximally block the tumorigenic potential of pancreatic cancer cells. These findings support that S100A4 plays an important role in pancreatic cancer progression in vivo and S100A4 promotes tumorigenic phenotypes of pancreatic cancer cells through the Src-FAK mediated dual signaling pathway.


Proceedings of the National Academy of Sciences of the United States of America | 2016

The histone H2A deubiquitinase Usp16 regulates hematopoiesis and hematopoietic stem cell function

Yue Gu; Amanda Jones; Wei Yang; Shanrun Liu; Qian Dai; Yudong Liu; C. Scott Swindle; Dewang Zhou; Zhuo Zhang; Thomas M. Ryan; Tim M. Townes; Christopher A. Klug; Dongquan Chen; Hengbin Wang

Significance Polycomb repressive complex 1 (PRC1) represents an important epigenetic regulator, which exerts its effect on gene expression via histone H2A ubiquitination (ubH2A). We developed a conditional Usp16 knockout mouse model and demonstrated that Usp16 is indispensable for hematopoiesis and hematopoietic stem cell (HSC) lineage commitment. We identified Usp16 to be a H2A deubiquitinase that counterbalances the PRC1 ubiquitin ligase to control ubH2A level in the hematopoietic system. Conditional Usp16 deletion led to altered expression of many regulators of chromatin organization and hematopoiesis. In addition, Usp16 maintains normal HSC cell cycle status via repressing the expression of Cdkn1a, which encodes p21cip1, an inhibitor of cell cycle entry. This study provides novel insights into the epigenetic mechanism that regulates hematopoiesis and HSC function. Epigenetic mechanisms play important regulatory roles in hematopoiesis and hematopoietic stem cell (HSC) function. Subunits of polycomb repressive complex 1 (PRC1), the major histone H2A ubiquitin ligase, are critical for both normal and pathological hematopoiesis; however, it is unclear which of the several counteracting H2A deubiquitinases functions along with PRC1 to control H2A ubiquitination (ubH2A) level and regulates hematopoiesis in vivo. Here we investigated the function of Usp16 in mouse hematopoiesis. Conditional deletion of Usp16 in bone marrow resulted in a significant increase of global ubH2A level and lethality. Usp16 deletion did not change HSC number but was associated with a dramatic reduction of mature and progenitor cell populations, revealing a role in governing HSC lineage commitment. ChIP- and RNA-sequencing studies in HSC and progenitor cells revealed that Usp16 bound to many important hematopoietic regulators and that Usp16 deletion altered the expression of genes in transcription/chromosome organization, immune response, hematopoietic/lymphoid organ development, and myeloid/leukocyte differentiation. The altered gene expression was partly rescued by knockdown of PRC1 subunits, suggesting that Usp16 and PRC1 counterbalance each other to regulate cellular ubH2A level and gene expression in the hematopoietic system. We further discovered that knocking down Cdkn1a (p21cip1), a Usp16 target and regulated gene, rescued the altered cell cycle profile and differentiation defect of Usp16-deleted HSCs. Collectively, these studies identified Usp16 as one of the histone H2A deubiquitinases, which coordinates with the H2A ubiquitin ligase PRC1 to regulate hematopoiesis, and revealed cell cycle regulation by Usp16 as key for HSC differentiation.


eLife | 2015

Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing

Li Zhang; Ngoc-Tung Tran; Hairui Su; Rui Wang; Yuheng Lu; Haiping Tang; Sayura Aoyagi; Ailan Guo; Alireza Khodadadi-Jamayran; Dewang Zhou; Kun Qian; Todd Hricik; Jocelyn Côté; Xiaosi Han; Wenping Zhou; Suparna Laha; Omar Abdel-Wahab; Ross L. Levine; Glen D. Raffel; Yanyan Liu; Dongquan Chen; Haitao Li; Tim M. Townes; Hengbin Wang; Haiteng Deng; Y. George Zheng; Christina S. Leslie; Minkui Luo; Xinyang Zhao

RBM15, an RNA binding protein, determines cell-fate specification of many tissues including blood. We demonstrate that RBM15 is methylated by protein arginine methyltransferase 1 (PRMT1) at residue R578, leading to its degradation via ubiquitylation by an E3 ligase (CNOT4). Overexpression of PRMT1 in acute megakaryocytic leukemia cell lines blocks megakaryocyte terminal differentiation by downregulation of RBM15 protein level. Restoring RBM15 protein level rescues megakaryocyte terminal differentiation blocked by PRMT1 overexpression. At the molecular level, RBM15 binds to pre-messenger RNA intronic regions of genes important for megakaryopoiesis such as GATA1, RUNX1, TAL1 and c-MPL. Furthermore, preferential binding of RBM15 to specific intronic regions recruits the splicing factor SF3B1 to the same sites for alternative splicing. Therefore, PRMT1 regulates alternative RNA splicing via reducing RBM15 protein concentration. Targeting PRMT1 may be a curative therapy to restore megakaryocyte differentiation for acute megakaryocytic leukemia. DOI: http://dx.doi.org/10.7554/eLife.07938.001


PLOS ONE | 2015

High Throughput Kinomic Profiling of Human Clear Cell Renal Cell Carcinoma Identifies Kinase Activity Dependent Molecular Subtypes.

Joshua C. Anderson; Christopher D. Willey; Amitkumar Mehta; Karim Welaya; Dongquan Chen; Christine W. Duarte; Pooja Ghatalia; Waleed Arafat; Ankit Madan; Sunil Sudarshan; Gurudatta Naik; William E. Grizzle; Toni K. Choueiri; Guru Sonpavde

Despite the widespread use of kinase-targeted agents in clear cell renal cell carcinoma (CC-RCC), comprehensive kinase activity evaluation (kinomic profiling) of these tumors is lacking. Thus, kinomic profiling of CC-RCC may assist in devising a classification system associated with clinical outcomes, and help identify potential therapeutic targets. Fresh frozen CC-RCC tumor lysates from 41 clinically annotated patients who had localized disease at diagnosis were kinomically profiled using the PamStation®12 high-content phospho-peptide substrate microarray system (PamGene International). Twelve of these patients also had matched normal kidneys available that were also profiled. Unsupervised hierarchical clustering and supervised comparisons based on tumor vs. normal kidney and clinical outcome (tumor recurrence) were performed and coupled with advanced network modeling and upstream kinase prediction methods. Unsupervised clustering analysis of localized CC-RCC tumors identified 3 major kinomic groups associated with inflammation (A), translation initiation (B), and immune response and cell adhesions (C) processes. Potential driver kinases implicated include PFTAIRE (PFTK1), PKG1, and SRC, which were identified in groups A, B, and C, respectively. Of the 9 patients who had tumor recurrence, only one was found in Group B. Supervised analysis showed decreased kinase activity of CDK1 and RSK1-4 substrates in those which progressed compared to others. Twelve tumors with matching normal renal tissue implicated increased PIM’s and MAPKAPK’s in tumors compared to adjacent normal renal tissue. As such, comprehensive kinase profiling of CC-RCC tumors could provide a functional classification strategy for patients with localized disease and identify potential therapeutic targets.


Journal of Proteome Research | 2014

Alterations in the rat serum proteome induced by prepubertal exposure to bisphenol a and genistein.

Angela M. Betancourt; James A. Mobley; Jun Wang; Sarah Jenkins; Dongquan Chen; Kyoko Kojima; Jose Russo; Coral A. Lamartiniere

Humans are exposed to an array of chemicals via the food, drink and air, including a significant number that can mimic endogenous hormones. One such chemical is Bisphenol A (BPA), a synthetic chemical that has been shown to cause developmental alterations and to predispose for mammary cancer in rodent models. In contrast, the phytochemical genistein has been reported to suppress chemically induced mammary cancer in rodents, and Asians ingesting a diet high in soy containing genistein have lower incidence of breast and prostate cancers. In this study, we sought to: (1) identify protein biomarkers of susceptibility from blood sera of rats exposed prepubertally to BPA or genistein using Isobaric Tandem Mass Tags quantitative mass spectrometry (TMT-MS) combined with MudPIT technology and, (2) explore the relevance of these proteins to carcinogenesis. Prepubertal exposures to BPA and genistein resulted in altered expression of 63 and 28 proteins in rat sera at postnatal day (PND) 21, and of 9 and 18 proteins in sera at PND35, respectively. This study demonstrates the value of using quantitative proteomic techniques to explore the effect of chemical exposure on the rat serum proteome and its potential for unraveling cellular targets altered by BPA and genistein involved in carcinogenesis.


Cancer immunology research | 2016

Expression of the MHC Class II Pathway in Triple-Negative Breast Cancer Tumor Cells Is Associated with a Good Prognosis and Infiltrating Lymphocytes

Andres Forero; Yufeng Li; Dongquan Chen; William E. Grizzle; Katherine L. Updike; Natalie D. Merz; Erinn Downs-Kelly; Todd C. Burwell; Christos Vaklavas; Donald J. Buchsbaum; Richard M Myers; Albert F. LoBuglio; Katherine E. Varley

The MHC II pathway is usually turned off in tumor cells. Expression in triple-negative breast tumors was correlated with antitumor responses and reduced relapse risk. MHC II expression may predict good prognosis, and inducing it may have therapeutic benefits. Triple-negative breast cancer (TNBC) is a subtype with heterogeneous patient outcomes. Approximately 40% of patients experience rapid relapse, while the remaining patients have long-term disease-free survival. To determine if there are molecular differences between primary tumors that predict prognosis, we performed RNA-seq on 47 macrodissected tumors from newly diagnosed patients with TNBC (n = 47; 22 relapse, 25 no relapse; follow-up median, 8 years; range, 2–11 years). We discovered that expression of the MHC class II (MHC II) antigen presentation pathway in tumor tissue was the most significant pathway associated with progression-free survival (HR, 0.36; log-rank P = 0.0098). The association between MHC II pathway expression and good prognosis was confirmed in a public gene expression database of 199 TNBC cases (HR, 0.28; log-rank P = 4.5 × 10–8). Further analysis of immunohistochemistry, laser-capture microdissected tumors, and TNBC cell lines demonstrated that tumor cells, in addition to immune cells, aberrantly express the MHC II pathway. MHC II pathway expression was also associated with B-cell and T-cell infiltration in the tumor. Together, these data support the model that aberrant expression of the MHC II pathway in TNBC tumor cells may trigger an antitumor immune response that reduces the rate of relapse and enhances progression-free survival. Cancer Immunol Res; 4(5); 390–9. ©2016 AACR.


Scientific Reports | 2016

A microscopic landscape of the invasive breast cancer genome.

Zheng Ping; Xia Y; Tiansheng Shen; Parekh; Gene P. Siegal; Eltoum Ie; Jianbo He; Dongquan Chen; Deng M; Xi R; Dejun Shen

Histologic grade is one of the most important microscopic features used to predict the prognosis of invasive breast cancer and may serve as a marker for studying cancer driving genomic abnormalities in vivo. We analyzed whole genome sequencing data from 680 cases of TCGA invasive ductal carcinomas of the breast and correlated them to corresponding pathology information. Ten genetic abnormalities were found to be statistically associated with histologic grade, including three most prevalent cancer driver events, TP53 and PIK3CA mutations and MYC amplification. A distinct genetic interaction among these genomic abnormalities was revealed as measured by the histologic grading score. While TP53 mutation and MYC amplification were synergistic in promoting tumor progression, PIK3CA mutation was found to have alleviated the oncogenic effect of either the TP53 mutation or MYC amplification, and was associated with a significant reduction in mitotic activity in TP53 mutated and/or MYC amplified breast cancer. Furthermore, we discovered that different types of genetic abnormalities (mutation versus amplification) within the same cancer driver gene (PIK3CA or GATA3) were associated with opposite histologic changes in invasive breast cancer. In conclusion, our study suggests that histologic grade may serve as a biomarker to define cancer driving genetic events in vivo.


Clinical Cancer Research | 2016

Silencing of CD24 Enhances the PRIMA-1–Induced Restoration of Mutant p53 in Prostate Cancer Cells

Wei Zhang; Bin Yi; Chao Wang; Dongquan Chen; Sejong Bae; Shi Wei; Rong-Jun Guo; Changming Lu; Lisa L.H. Nguyen; Wei-Hsiung Yang; James W. Lillard; Xingyi Zhang; Lizhong Wang; Runhua Liu

Purpose: In prostate cancer cells, there is CD24-dependent inactivation of mutant p53, but the mechanism and its significance remain largely unknown. Here, we validated this observation and explored the therapeutic potential of targeting CD24 in TP53 mutant prostate cancer cells. Experimental Design: Overall, 553 prostate cancers (522 formalin-fixed paraffin-embedded and 31 frozen tissues) were assessed for protein or mRNA expression of CD24 and TP53. The effects of CD24 on p53-dependent transcriptional regulation, cancer cell growth, the cell cycle, apoptosis, and mutant p53 restoration were also determined. Results: As determined with three sample cohorts, CD24 and p53 were not expressed in prostate epithelial cells but in prostate cancer cells in 48% of cases for CD24 and 16% of cases for p53 (mutant form). Expressions of CD24 and mutant p53 were more frequently observed in late-stage and metastatic prostate tumors. Mutant p53 accompanied with CD24 was expressed in most cases (91.6%, 76/83). Silencing of CD24 increased the transcriptional activity of p53 target genes, such as CDKNA1, VDR, and TP53INP1, leading to suppression of p53-dependent cell growth, cell-cycle arrest, and apoptosis in most TP53-mutant prostate cancer cells. Silencing of CD24 enhanced restoration of PRIMA-1–induced mutant p53 in endogenous TP53P223L/V274F DU145 cells and in PC3 cells transfected with TP53R273H. Conclusions: In human prostate cancers, there is CD24-dependent inactivation of mutant p53. The coexpression of CD24 and p53 may help identify aggressive cancers. Targeting CD24 provides a strategy to enhance mutant p53-restoring therapies, especially in patients with TP53R273H prostate cancer. Clin Cancer Res; 22(10); 2545–54. ©2015 AACR.


Journal of Neuroimmunology | 2012

Sex hormone-dependent attenuation of EAE in a transgenic mouse with astrocytic expression of the RNA regulator HuR

Crystal G. Wheeler; L. Burt Nabors; Scott R. Barnum; Xiuhua Yang; Xianzhen Hu; Trenton R. Schoeb; Dongquan Chen; Agnieszka Ardelt; Peter H. King

In experimental autoimmune encephalomyelitis (EAE) and other neurodegenerative diseases, astrocytes play an important role in promoting or attenuating the inflammatory response through induction of different cytokines and growth factors. HuR plays a major role in regulating many of these factors by modulating RNA stability and translational efficiency. Here, we engineered transgenic mice to express HuR in astrocytes using the human glial fibrillary acidic protein promoter and found that female transgenic mice had significantly less clinical disability and histopathological changes in the spinal cord. Ovariectomy prior to EAE induction abrogated the protective effect. Our findings support a role for the astrocyte and posttranscriptional regulation in hormonally-mediated attenuation of EAE.

Collaboration


Dive into the Dongquan Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gurudatta Naik

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

William E. Grizzle

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Amitkumar Mehta

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Christopher D. Willey

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Shi Wei

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sunil Sudarshan

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge