Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dongsheng Ji is active.

Publication


Featured researches published by Dongsheng Ji.


Scientific Reports | 2015

Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days

Hong He; Yuesi Wang; Qingxin Ma; Jinzhu Ma; Biwu Chu; Dongsheng Ji; Guiqian Tang; Chang Liu; Hongxing Zhang; Jiming Hao

Haze in China has been increasing in frequency of occurrence as well as the area of the affected region. Here, we report on a new mechanism of haze formation, in which coexistence with NOx can reduce the environmental capacity for SO2, leading to rapid conversion of SO2 to sulfate because NO2 and SO2 have a synergistic effect when they react on the surface of mineral dust. Monitoring data from five severe haze episodes in January of 2013 in the Beijing-Tianjin-Hebei regions agreed very well with the laboratory simulation. The combined air pollution of motor vehicle exhaust and coal-fired flue gases greatly reduced the atmospheric environmental capacity for SO2, and the formation of sulfate was found to be a main reason for the growth of fine particles, which led to the occurrence of haze. These results indicate that the impact of motor vehicle exhaust on the atmospheric environment might be underestimated.


Bulletin of the American Meteorological Society | 2015

The Campaign on Atmospheric Aerosol Research Network of China: CARE-China

Jinyuan Xin; Yuesi Wang; Yuepeng Pan; Dongsheng Ji; Zirui Liu; Tianxue Wen; Yinghong Wang; Xingru Li; Yang Sun; Jie Sun; Pucai Wang; Gehui Wang; Xinming Wang; Zhiyuan Cong; Tao Song; Bo Hu; Lili Wang; Guiqian Tang; Wenkang Gao; Yuhong Guo; Hongyan Miao; Shili Tian; Lu Wang

AbstractBased on a network of field stations belonging to the Chinese Academy of Sciences (CAS), the Campaign on Atmospheric Aerosol Research network of China (CARE-China) was recently established as the country’s first monitoring network for the study of the spatiotemporal distribution of aerosol physical characteristics, chemical components, and optical properties, as well as aerosol gaseous precursors. The network comprises 36 stations in total and adopts a unified approach in terms of the instrumentation, experimental standards, and data specifications. This ongoing project is intended to provide an integrated research platform to monitor online PM2.5 concentrations, nine-size aerosol concentrations and chemical component distributions, nine-size secondary organic aerosol (SOA) component distributions, gaseous precursor concentrations (including SO2, NOx, CO, O3, and VOCs), and aerosol optical properties. The data will be used to identify the sources of regional aerosols, the relative contributions fr...


Scientific Reports | 2016

Rapid formation and evolution of an extreme haze episode in Northern China during winter 2015.

Yele Sun; Chen Chen; Yingjie Zhang; Weiqi Xu; Libo Zhou; Xueling Cheng; Haitao Zheng; Dongsheng Ji; Jie Li; Xiao Tang; Pingqing Fu; Zifa Wang

We investigate the rapid formation and evolutionary mechanisms of an extremely severe and persistent haze episode that occurred in northern China during winter 2015 using comprehensive ground and vertical measurements, along with receptor and dispersion model analysis. Our results indicate that the life cycle of a severe winter haze episode typically consists of four stages: (1) rapid formation initiated by sudden changes in meteorological parameters and synchronous increases in most aerosol species, (2) persistent evolution with relatively constant variations in secondary inorganic aerosols and secondary organic aerosols, (3) further evolution associated with fog processing and significantly enhanced sulfate levels, and (4) clearing due to dry, cold north-northwesterly winds. Aerosol composition showed substantial changes during the formation and evolution of the haze episode but was generally dominated by regional secondary aerosols (53–67%). Our results demonstrate the important role of regional transport, largely from the southwest but also from the east, and of coal combustion emissions for winter haze formation in Beijing. Also, we observed an important downward mixing pathway during the severe haze in 2015 that can lead to rapid increases in certain aerosol species.


Advances in Meteorology | 2014

The Influence of Climate Factors, Meteorological Conditions, and Boundary-Layer Structure on Severe Haze Pollution in the Beijing-Tianjin-Hebei Region during January 2013

Lili Wang; Nan Zhang; Zirui Liu; Yang Sun; Dongsheng Ji; Yuesi Wang

The air-pollution episodes in China in January 2013 were the most hazardous in the Beijing-Tianjin-Hebei (BTH) region. PM2.5, AOD, and long-term visibility data, along with various climate and meteorological factors and the boundary-layer structure, were used to investigate the cause of the heavy-haze pollution events in January 2013. The result suggests that unfavorable diffusion conditions (weak surface winds and high humidity) and high primary-pollutant emissions have induced heavy-haze pollution in the BTH region over the past two decades. A sudden stratospheric warming (SSW), weak East Asian winter monsoon, a weak Siberian High, weak meridional circulation, southerly wind anomalies in the lower troposphere, and abnormally weak surface winds and high humidity were responsible for the severe haze pollution events, rather than an abrupt increase in emissions. Heavy/severe haze pollution is associated with orographic wind convergence zones along the Taihang and Yanshan Mountains, slight winds (1.7∼2.1 m/s), and high humidity (70%∼90%), which limits the diffusion of pollutants and facilitates the hygroscopic growth of aerosols. Recirculation and regional transport, along with the poorest diffusion conditions and favorable conditions for hygroscopic growth of aerosols and secondary transformation under the high emission, led to explosive growth and the record high hourly average concentration of PM2.5 in Beijing.


Journal of Environmental Sciences-china | 2012

Characterization of volatile organic compounds in the urban area of Beijing from 2000 to 2007

Yuesi Wang; Xiyan Ren; Dongsheng Ji; Junqang Zhang; Jie Sun; Fankun Wu

Beijing is one of the most polluted cities in the world. In this study, the long-term and continuous measurements of volatile organic compounds (VOCs) in the urban area of Beijing, specifically at Beijing 325 m Meteorological Tower, were conducted from 2000 to 2007. The annual record of VOC trends exhibited in two different phases was separated in 2003. Records show that VOC concentrations increased from 2000 to 2003 due to the abrupt increase in vehicle number. Contrarily, since 2003, there had been a decrease in VOCs concentrations as the policy on gasoline and air pollution was implemented. Toluene, benzene, and i-pentane are the chemicals that abound in and are directly related to vehicle activity, such as in vehicle exhaust and gasoline evaporation. Furthermore, records indicate that there had been seasonal variation in VOCs levels in that VOCs level in summer is higher than that in winter. As such, temperature is considered to significantly contribute to VOCs in Beijing. Records also show that VOCs level was high in the morning and during rush hours in the evening. In contrast, VOCs level was low during midday due to photochemical destruction with OH radical and dilution effect. In this study, a particular benzene to toluene ratio range (0.4-1.0) was used as the indicator of air propelled by vehicular exhaust. We also applied the correlation coefficients between BTEX and i-pentane to evaluate evaporation influence to ambient BTEX in the Beijing urban area.


Advances in Atmospheric Sciences | 2012

Reductions of PM2.5 in Beijing-Tianjin-Hebei Urban Agglomerations during the 2008 Olympic Games

Jinyuan Xin; Yuesi Wang; Lili Wang; Guiqian Tang; Yang Sun; Yuepeng Pan; Dongsheng Ji

The Atmospheric Environmental Monitoring Network successfully undertook the task of monitoring the atmospheric quality of Beijing and its surrounding area during the 2008 Olympics. The results of this monitoring show that high concentrations of PM2.5 pollution exhibited a regional pattern during the monitoring period (1 June–30 October 2008). The PM2.5 mass concentrations were 53 μg m−3, 66 μg m−3, and 82 μg m−3 at the background site, in Beijing, and in the Beijing-Tianjin-Hebei urban agglomerations, respectively. The PM2.5 levels were lowest during the 2008 Olympic Games (8-24 August): 35 μg m−3 at the background site, 42 μg m−3 in Beijing and 57 μg m−3 in the region. These levels represent decreases of 49%, 48%, and 56%, respectively, compared to the prophase mean concentration before the Olympic Games. Emission control measures contributed 62%–82% of the declines observed in Beijing, and meteorological conditions represented 18%–38%. The concentration of fine particles met the goals set for a “Green Olympics.”


Frontiers of Environmental Science & Engineering in China | 2016

Improving simulations of sulfate aerosols during winter haze over Northern China: the impacts of heterogeneous oxidation by NO2

Meng Gao; Gregory R. Carmichael; Yuesi Wang; Dongsheng Ji; Zirui Liu; Zifa Wang

We implemented the online coupled WRF-Chem model to reproduce the 2013 January haze event in North China, and evaluated simulated meteorological and chemical fields using multiple observations. The comparisons suggest that temperature and relative humidity (RH) were simulated well (mean biases are–0.2K and 2.7%, respectively), but wind speeds were overestimated (mean bias is 0.5 m∙s–1). At the Beijing station, sulfur dioxide (SO2) concentrations were overpredicted and sulfate concentrations were largely underpredicted, which may result from uncertainties in SO2 emissions and missing heterogeneous oxidation in current model. We conducted three parallel experiments to examine the impacts of doubling SO2 emissions and incorporating heterogeneous oxidation of dissolved SO2 by nitrogen dioxide (NO2) on sulfate formation during winter haze. The results suggest that doubling SO2 emissions do not significantly affect sulfate concentrations, but adding heterogeneous oxidation of dissolved SO2 by NO2 substantially improve simulations of sulfate and other inorganic aerosols. Although the enhanced SO2 to sulfate conversion in the HetS (heterogeneous oxidation by NO2) case reduces SO2 concentrations, it is still largely overestimated by the model, indicating the overestimations of SO2 concentrations in the North China Plain (NCP) are mostly due to errors in SO2 emission inventory.


Science of The Total Environment | 2016

Characterization of submicron particles during biomass burning and coal combustion periods in Beijing, China

Junfang Zhang; Miaomiao Cheng; Dongsheng Ji; Zongtang Liu; Baoyang Hu; Sun Y; Yuesi Wang

An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed along with other observation instruments to measure the characteristics of PM1 (particulate matter with a vacuum aerodynamic diameter of ≤1μm) during the biomass burning period (October 1 to 27; BBP) and the coal combustion period (December 10 to 31; CCP) in Beijing in 2014. The average PM1 mass concentrations during the BBP and CCP were 82.3 and 37.5μgm(-3), respectively. Nitrate, ammonium and other pollutants emitted by the burning processes, especially coal combustion, increased significantly in association with increased pollution levels. Positive matrix factorization (PMF) was applied to a unified high-resolution mass spectra database of organic species with NO(+) and NO2(+) ions to discover the relationships between organic and inorganic species. One inorganic factor was identified in both periods, and another five and four distinct organic factors were identified in the BBP and CCP, respectively. Secondary organic aerosols (SOAs) accounted for 55% of the total organic aerosols (OAs) during the BBP, which is higher than the proportion during the CCP (oxygenated OA, 40%). The organic nitrate and inorganic nitrate were first successfully separated through the PMF analysis based on the HR-ToF-AMS observations in Beijing, and organic nitrate components accounted for 21% and 18% of the total nitrate mass during the BBP and CCP, respectively. Although the PM1 mass concentration during the CCP was much lower than in the BBP, the average concentration of polycyclic aromatic hydrocarbons (PAHs) during the CCP (107.3±171.6ngm(-3)) was ~5 times higher than that in the BBP (21.9±21.7ngm(-3)).


Advances in Atmospheric Sciences | 2015

Characterization of organic aerosols in Beijing using an aerodyne high-resolution aerosol mass spectrometer

Junke Zhang; Yuesi Wang; Xiaojuan Huang; Zirui Liu; Dongsheng Ji; Yang Sun

Fine particle of organic aerosol (OA), mostly arising from pollution, are abundant in Beijing. To achieve a better understanding of the difference in OA in summer and autumn, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Research Inc., USA) was deployed in urban Beijing in August and October 2012. The mean OA mass concentration in autumn was 30±30 μg m−3, which was higher than in summer (13±6.9 μg m−3). The elemental analysis found that OA was more aged in summer (oxygen-to-carbon (O/C) ratios were 0.41 and 0.32 for summer and autumn, respectively). Positive matrix factorization (PMF) analysis identified three and five components in summer and autumn, respectively. In summer, an oxygenated OA (OOA), a cooking-emission-related OA (COA), and a hydrocarbon-like OA (HOA) were indentified. Meanwhile, the OOA was separated into LV-OOA (low-volatility OOA) and SV-OOA (semi-volatile OOA); and in autumn, a nitrogen-containing OA (NOA) was also found. The SOA (secondary OA) was always the most important OA component, accounting for 55% of the OA in the two seasons. Back trajectory clustering analysis found that the origin of the air masses was more complex in summer. Southerly air masses in both seasons were associated with the highest OA loading, while northerly air masses were associated with the lowest OA loading. A preliminary study of OA components, especially the POA (primary OA), in different periods found that the HOA and COA all decreased during the National Day holiday period, and HOA decreased at weekends compared with weekdays.


Science of The Total Environment | 2016

Investigating the evolution of summertime secondary atmospheric pollutants in urban Beijing.

Dongsheng Ji; Wenkang Gao; Junke Zhang; Yu Morino; Luxi Zhou; Pengfei Yu; Ying Li; Jiaren Sun; Baozhu Ge; Guiqian Tang; Yele Sun; Yuesi Wang

Understanding the formation of tropospheric ozone (O3) and secondary particulates is essential for controlling secondary pollution in megacities. Intensive observations were conducted to investigate the evolution of O3, nitrate (NO3-), sulfate (SO42-) and oxygenated organic aerosols ((OOAs), a proxy for secondary organic aerosols) and the interactions between O3, NOx oxidation products (NOz) and OOA in urban Beijing in August 2012. The O3 concentrations exhibited similar variations at both the urban and urban background sites in Beijing. Regarding the O3 profile, the O3 concentrations increased with increasing altitude. The peaks in O3 on the days exceeding the 1h or 8h O3 standards (polluted days) were substantially wider than those on normal days. Significant increases in the NOz mixing ratio (i.e., NOy - NOx) were observed between the morning and early afternoon, which were consistent with the increasing oxidant level. A discernable NO3- peak was also observed in the morning on the polluted days, and this peak was attributed to vertical mixing and strong photochemical production. In addition, a SO42- peak at 18:00 was likely caused by a combination of local generation and regional transport. The OOA concentration cycle exhibited two peaks at approximately 10:00 and 19:00. The OOA concentrations were correlated well with SO42- ([OOA]=0.55×[SO42-]+2.1, r2=0.69) because they both originated from secondary transformations that were dependent on the ambient oxidization level and relative humidity. However, the slope between OOA and SO42- was only 0.35, which was smaller than the slope observed for all of the OOA and SO42- data, when the RH ranged from 40 to 50%. In addition, a photochemical episode was selected for analysis. The results showed that regional transport played an important role in the evolution of the investigated secondary pollutants. The measured OOA and Ox concentrations were well correlated at the daily scale, whereas the hourly OOA and Ox concentrations were insignificantly correlated in urban Beijing. The synoptic situation and the differences in the VOC oxidation contributing to O3 and SOAs may have resulted in the differences among the correlations between OOA and Ox at different time scale. We calculated OOA production rates using the photochemical age (defined as -log10(NOx/NOy)) in urban plumes. The CO-normalized OOA concentration increased with increasing photochemical age, with production rates ranging from 1.1 to 8.5μgm-3ppm-1h-1 for the plume from the NCP.

Collaboration


Dive into the Dongsheng Ji's collaboration.

Top Co-Authors

Avatar

Yuesi Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zirui Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lili Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guiqian Tang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bo Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yang Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tianxue Wen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Junke Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jinyuan Xin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenkang Gao

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge