Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dongwoo Shin is active.

Publication


Featured researches published by Dongwoo Shin.


Science | 2006

A Positive Feedback Loop Promotes Transcription Surge That Jump-Starts Salmonella Virulence Circuit

Dongwoo Shin; Eun-Jin Lee; Henry V. Huang; Eduardo A. Groisman

The PhoP/PhoQ two-component system is a master regulator of Salmonella pathogenicity. Here we report that induction of the PhoP/PhoQ system results in an initial surge of PhoP phosphorylation; the occupancy of target promoters by the PhoP protein; and the transcription of PhoP-activated genes, which then subsides to reach new steady-state levels. This surge in PhoP activity is due to PhoP positively activating its own transcription, because a strain constitutively expressing the PhoP protein attained steady-state levels of activation asymptotically, without the surge. The strain constitutively expressing the PhoP protein was attenuated for virulence in mice, demonstrating that the surge conferred by PhoPs positive feedback loop is necessary to jump-start Salmonellas virulence program.


PLOS Genetics | 2009

Evolution of a Bacterial Regulon Controlling Virulence and Mg2+ Homeostasis

J. Christian Perez; Dongwoo Shin; Igor Zwir; Tammy Latifi; Tricia J. Hadley; Eduardo A. Groisman

Related organisms typically rely on orthologous regulatory proteins to respond to a given signal. However, the extent to which (or even if) the targets of shared regulatory proteins are maintained across species has remained largely unknown. This question is of particular significance in bacteria due to the widespread effects of horizontal gene transfer. Here, we address this question by investigating the regulons controlled by the DNA-binding PhoP protein, which governs virulence and Mg2+ homeostasis in several bacterial species. We establish that the ancestral PhoP protein directs largely different gene sets in ten analyzed species of the family Enterobacteriaceae, reflecting both regulation of species-specific targets and transcriptional rewiring of shared genes. The two targets directly activated by PhoP in all ten species (the most distant of which diverged >200 million years ago), and coding for the most conserved proteins are the phoPQ operon itself and the lipoprotein-encoding slyB gene, which decreases PhoP protein activity. The Mg2+-responsive PhoP protein dictates expression of Mg2+ transporters and of enzymes that modify Mg2+-binding sites in the cell envelope in most analyzed species. In contrast to the core PhoP regulon, which determines the amount of active PhoP and copes with the low Mg2+ stress, the variable members of the regulon contribute species-specific traits, a property shared with regulons controlled by dissimilar regulatory proteins and responding to different signals.


Infection and Immunity | 2007

Implication of Quorum Sensing in Salmonella enterica Serovar Typhimurium Virulence: the luxS Gene Is Necessary for Expression of Genes in Pathogenicity Island 1

Jeongjoon Choi; Dongwoo Shin; Sangryeol Ryu

ABSTRACT Despite the fact that the regulatory system sensing density of cell population and its signaling molecule have been identified in Salmonella enterica, the biological significance of this phenomenon termed as quorum sensing remains unknown. In this report, we provide evidence that the luxS gene is necessary for Salmonella virulence phenotypes. Transcription assays showed that the cell-density-dependent induction of the invF gene was abolished in a Salmonella strain with the luxS gene deleted. The effect of the luxS deletion was also investigated in other InvF-regulated genes expressed from Salmonella pathogenicity island 1 (SPI-1). The decreased expression of SPI-1 genes in the strain with luxS deleted could be restored by either the addition of a synthetic signal molecule or the introduction of a plasmid copy of the luxS gene. Thus, the reduced expression of invF and its regulated genes in Salmonella cells lacking quorum sensing resulted in the attenuation of virulence phenotypes both in vitro and in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Salmonella pathogenicity island 2 expression negatively controlled by EIIANtr–SsrB interaction is required for Salmonella virulence

Jeongjoon Choi; Dongwoo Shin; Hyunjin Yoon; Jiae Kim; Chang-Ro Lee; Minjeong Kim; Yeong-Jae Seok; Sangryeol Ryu

SsrA/SsrB is a primary two-component system that mediates the survival and replication of Salmonella within host cells. When activated, the SsrB response regulator directly promotes the transcription of multiple genes within Salmonella pathogenicity island 2 (SPI-2). As expression of the SsrB protein is promoted by several transcription factors, including SsrB itself, the expression of SPI-2 genes can increase to undesirable levels under activating conditions. Here, we report that Salmonella can avoid the hyperactivation of SPI-2 genes by using ptsN-encoded EIIANtr, a component of the nitrogen-metabolic phosphotransferase system. Under SPI-2–inducing conditions, the levels of SsrB-regulated gene transcription increased abnormally in a ptsN deletion mutant, whereas they decreased in a strain overexpressing EIIANtr. We found that EIIANtr controls SPI-2 genes by acting on the SsrB protein at the posttranscriptional level. EIIANtr interacted directly with SsrB, which prevented the SsrB protein from binding to its target promoter. Finally, the Salmonella strain, either lacking the ptsN gene or overexpressing EIIANtr, was unable to replicate within macrophages, and the ptsN deletion mutant was attenuated for virulence in mice. These results indicated that normal SPI-2 gene expression maintained by an EIIANtr–SsrB interaction is another determinant of Salmonella virulence.


Journal of Bacteriology | 2009

Activated by Different Signals, the PhoP/PhoQ Two-Component System Differentially Regulates Metal Uptake

Eunna Choi; Eduardo A. Groisman; Dongwoo Shin

The PhoP/PhoQ two-component system controls several physiological and virulence functions in Salmonella enterica. This system is activated by low Mg(2+), acidic pH, and antimicrobial peptides, but the biological consequences resulting from sensing multiple signals are presently unclear. Here, we report that the PhoP/PhoQ system regulates different Salmonella genes depending on whether the inducing signal is acidic pH or low Mg(2+). When Salmonella experiences acidic pH, the PhoP/PhoQ system promotes Fe(2+) uptake in a process that requires the response regulator RstA, activating transcription of the Fe(2+) transporter gene feoB. In contrast, the PhoP-induced RstA protein did not promote feoB expression at neutral pH with low Mg(2+). The PhoP/PhoQ system promotes the expression of the Mg(2+) transporter mgtA gene only when activated in bacteria starved for Mg(2+). This is because mgtA transcription promoted at high Mg(2+) concentrations by the acidic-pH-activated PhoP protein failed to reach the mgtA coding region due to the mgtA leader region functioning as a Mg(2+) sensor. Our results show that a single two-component regulatory system can regulate distinct sets of genes in response to different input signals.


Journal of Bacteriology | 2008

RstA-Promoted Expression of the Ferrous Iron Transporter FeoB under Iron-Replete Conditions Enhances Fur Activity in Salmonella enterica

Jihye Jeon; Hyunkeun Kim; Jiae Yun; Sangryeol Ryu; Eduardo A. Groisman; Dongwoo Shin

The Fur protein is a primary regulator that monitors and controls cytoplasmic iron levels. We now report the identification of a regulatory pathway mediated by the Salmonella response regulator RstA that promotes Fur activity. Genome-wide expression experiments revealed that under iron-replete conditions, expression of the RstA protein from a plasmid lowered transcription levels of various genes involved in iron acquisition. The RstA protein controlled iron-responsive genes through the Fur-Fe(II) protein because deletion of the fur gene or iron depletion abrogated RstA-mediated repression of these genes. The RstA protein maintained wild-type levels of the Fur protein but exceptionally activated transcription of the feoAB operon encoding the ferrous iron transporter FeoB by binding directly to the feoA promoter. This FeoB induction resulted in increased ferrous iron uptake, which associates with the Fur protein because lack of RstA-dependent transcriptional activation of the feoA promoter and feoB-deletion abolished repression of the Fur target genes by the RstA protein. Under iron-replete conditions, RstA expression retarded Salmonella growth but enabled the Fur protein to repress the target genes beyond the levels which were simply accomplished by iron.


Mbio | 2014

Bacterial Nucleoid-Associated Protein Uncouples Transcription Levels from Transcription Timing

Igor Zwir; Won-Sik Yeo; Dongwoo Shin; Tammy Latifi; Henry V. Huang; Eduardo A. Groisman

ABSTRACT The histone-like nucleoid-structuring (H-NS) protein binds to horizontally acquired genes in the bacterium Salmonella enterica serovar Typhimurium, silencing their expression. We now report that overcoming the silencing effects of H-NS imposes a delay in the expression of genes activated by the transcriptional regulator PhoP. We determine that PhoP-activated genes ancestral to Salmonella are expressed before those acquired horizontally. This expression timing reflects the in vivo occupancy of the corresponding promoters by the PhoP protein. These results are surprising because some of these horizontally acquired genes reached higher mRNA levels than ancestral genes expressed earlier and were transcribed from promoters harboring PhoP-binding sites with higher in vitro affinity for the PhoP protein. Our findings challenge the often-made assumption that for genes coregulated by a given transcription factor, early genes are transcribed to higher mRNA levels than those transcribed at later times. Moreover, they provide a singular example of how gene ancestry can impact expression timing. IMPORTANCE We report that gene ancestry dictates the expression behavior of genes under the direct control of the Salmonella transcriptional regulator PhoP. That is, ancestral genes are transcribed before horizontally acquired genes. This reflects both the need to overcome silencing by the H-NS protein of the latter genes and the architecture of the corresponding promoters. Unexpectedly, transcription levels do not reflect transcription timing. Our results illustrate how a bacterium can exhibit an elaborate temporal expression behavior among genes coregulated by a transcription factor even though the products encoded by the target genes do not participate in a morphological or developmental pathway. We report that gene ancestry dictates the expression behavior of genes under the direct control of the Salmonella transcriptional regulator PhoP. That is, ancestral genes are transcribed before horizontally acquired genes. This reflects both the need to overcome silencing by the H-NS protein of the latter genes and the architecture of the corresponding promoters. Unexpectedly, transcription levels do not reflect transcription timing. Our results illustrate how a bacterium can exhibit an elaborate temporal expression behavior among genes coregulated by a transcription factor even though the products encoded by the target genes do not participate in a morphological or developmental pathway.


Infection and Immunity | 2012

Expression of STM4467-Encoded Arginine Deiminase Controlled by the STM4463 Regulator Contributes to Salmonella enterica Serovar Typhimurium Virulence

Younho Choi; Jeongjoon Choi; Eduardo A. Groisman; Dong-Hyun Kang; Dongwoo Shin; Sangryeol Ryu

ABSTRACT Arginine deiminase (ADI), carbamate kinase (CK), and ornithine transcarbamoylase (OTC) constitute the ADI system. In addition to metabolic functions, the ADI system has been implicated in the virulence of certain pathogens. The pathogenic intracellular bacterium Salmonella enterica serovar Typhimurium possesses the STM4467, STM4466, and STM4465 genes, which are predicted to encode ADI, CK, and OTC, respectively. Here we report that the STM4467 gene encodes an ADI and that ADI activity plays a role in the successful infection of a mammalian host by S. Typhimurium. An STM4467 deletion mutant was defective for replication inside murine macrophages and was attenuated for virulence in mice. We determined that a regulatory protein encoded by the STM4463 gene functions as an activator for STM4467 expression. The expression of the ADI pathway genes was enhanced inside macrophages in a process that required STM4463. Lack of STM4463 impaired the ability of S. Typhimurium to replicate within macrophages. A mutant defective in STM4467-encoded ADI displayed normal production of nitric oxide by macrophages.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica

Igor Zwir; Dongwoo Shin; Akinori Kato; Kunihiko Nishino; Tammy Latifi; Felix Solomon; Janelle M. Hare; Henry V. Huang; Eduardo A. Groisman


Journal of Biological Chemistry | 2005

Signal-dependent binding of the response regulators PhoP and PmrA to their target promoters in vivo.

Dongwoo Shin; Eduardo A. Groisman

Collaboration


Dive into the Dongwoo Shin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sangryeol Ryu

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Henry V. Huang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jeongjoon Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Tammy Latifi

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Yeong-Jae Seok

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Igor Zwir

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor Zwir

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge