Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dongxia Yuan is active.

Publication


Featured researches published by Dongxia Yuan.


PLOS ONE | 2012

Transcriptome Analysis of the Model Protozoan, Tetrahymena thermophila, Using Deep RNA Sequencing

Jie Xiong; Xingyi Lu; Zhemin Zhou; Yue Chang; Dongxia Yuan; Miao Tian; Zhigang Zhou; Lei Wang; Chengjie Fu; Eduardo Orias; Wei Miao

Background The ciliated protozoan Tetrahymena thermophila is a well-studied single-celled eukaryote model organism for cellular and molecular biology. However, the lack of extensive T. thermophila cDNA libraries or a large expressed sequence tag (EST) database limited the quality of the original genome annotation. Methodology/Principal Findings This RNA-seq study describes the first deep sequencing analysis of the T. thermophila transcriptome during the three major stages of the life cycle: growth, starvation and conjugation. Uniquely mapped reads covered more than 96% of the 24,725 predicted gene models in the somatic genome. More than 1,000 new transcribed regions were identified. The great dynamic range of RNA-seq allowed detection of a nearly six order-of-magnitude range of measurable gene expression orchestrated by this cell. RNA-seq also allowed the first prediction of transcript untranslated regions (UTRs) and an updated (larger) size estimate of the T. thermophila transcriptome: 57 Mb, or about 55% of the somatic genome. Our study identified nearly 1,500 alternative splicing (AS) events distributed over 5.2% of T. thermophila genes. This percentage represents a two order-of-magnitude increase over previous EST-based estimates in Tetrahymena. Evidence of stage-specific regulation of alternative splicing was also obtained. Finally, our study allowed us to completely confirm about 26.8% of the genes originally predicted by the gene finder, to correct coding sequence boundaries and intron-exon junctions for about a third, and to reassign microarray probes and correct earlier microarray data. Conclusions/Significance RNA-seq data significantly improve the genome annotation and provide a fully comprehensive view of the global transcriptome of T. thermophila. To our knowledge, 5.2% of T. thermophila genes with AS is the highest percentage of genes showing AS reported in a unicellular eukaryote. Tetrahymena thus becomes an excellent unicellular model eukaryote in which to investigate mechanisms of alternative splicing.


PLOS Biology | 2013

Selecting one of several mating types through gene segment joining and deletion in Tetrahymena thermophila.

Marcella D. Cervantes; Eileen P. Hamilton; Jie Xiong; Michael J. Lawson; Dongxia Yuan; Michalis Hadjithomas; Wei Miao; Eduardo Orias

In Tetrahymena, a multi-sexed single-celled organism, the sex of the progeny is randomly determined by site-specific recombination events that assemble one complete gene pair and delete all others.


Genes & Development | 2013

Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation

Shan Gao; Jie Xiong; Chunchao Zhang; Brian R. Berquist; Rendong Yang; Meng Zhao; Anthony J. Molascon; Shaina Y. Kwiatkowski; Dongxia Yuan; Zhaohui S. Qin; Jian-Fan Wen; Geoffrey M. Kapler; Philip C. Andrews; Wei Miao; Yifan Liu

Replication of nuclear DNA occurs in the context of chromatin and is influenced by histone modifications. In the ciliate Tetrahymena thermophila, we identified TXR1, encoding a histone methyltransferase. TXR1 deletion resulted in severe DNA replication stress, manifested by the accumulation of ssDNA, production of aberrant replication intermediates, and activation of robust DNA damage responses. Paired-end Illumina sequencing of ssDNA revealed intergenic regions, including replication origins, as hot spots for replication stress in ΔTXR1 cells. ΔTXR1 cells showed a deficiency in histone H3 Lys 27 monomethylation (H3K27me1), while ΔEZL2 cells, deleting a Drosophila E(z) homolog, were deficient in H3K27 di- and trimethylation, with no detectable replication stress. A point mutation in histone H3 at Lys 27 (H3 K27Q) mirrored the phenotype of ΔTXR1, corroborating H3K27me1 as a key player in DNA replication. Additionally, we demonstrated interactions between TXR1 and proliferating cell nuclear antigen (PCNA). These findings support a conserved pathway through which H3K27me1 facilitates replication elongation.


Database | 2013

Tetrahymena Functional Genomics Database (TetraFGD): an integrated resource for Tetrahymena functional genomics

Jie Xiong; Yuming Lu; Jinmei Feng; Dongxia Yuan; Miao Tian; Yue Chang; Chengjie Fu; Guangying Wang; Honghui Zeng; Wei Miao

The ciliated protozoan Tetrahymena thermophila is a useful unicellular model organism for studies of eukaryotic cellular and molecular biology. Researches on T. thermophila have contributed to a series of remarkable basic biological principles. After the macronuclear genome was sequenced, substantial progress has been made in functional genomics research on T. thermophila, including genome-wide microarray analysis of the T. thermophila life cycle, a T. thermophila gene network analysis based on the microarray data and transcriptome analysis by deep RNA sequencing. To meet the growing demands for the Tetrahymena research community, we integrated these data to provide a public access database: Tetrahymena functional genomics database (TetraFGD). TetraFGD contains three major resources, including the RNA-Seq transcriptome, microarray and gene networks. The RNA-Seq data define gene structures and transcriptome, with special emphasis on exon–intron boundaries; the microarray data describe gene expression of 20 time points during three major stages of the T. thermophila life cycle; the gene network data identify potential gene–gene interactions of 15 049 genes. The TetraFGD provides user-friendly search functions that assist researchers in accessing gene models, transcripts, gene expression data and gene–gene relationships. In conclusion, the TetraFGD is an important functional genomic resource for researchers who focus on the Tetrahymena or other ciliates. Database URL: http://tfgd.ihb.ac.cn/


PLOS ONE | 2011

Gene network landscape of the ciliate Tetrahymena thermophila.

Jie Xiong; Dongxia Yuan; Jeffrey Fillingham; Jyoti Garg; Xingyi Lu; Yue Chang; Yifan Liu; Chengjie Fu; Ronald E. Pearlman; Wei Miao

Background Genome-wide expression data of gene microarrays can be used to infer gene networks. At a cellular level, a gene network provides a picture of the modules in which genes are densely connected, and of the hub genes, which are highly connected with other genes. A gene network is useful to identify the genes involved in the same pathway, in a protein complex or that are co-regulated. In this study, we used different methods to find gene networks in the ciliate Tetrahymena thermophila, and describe some important properties of this network, such as modules and hubs. Methodology/Principal Findings Using 67 single channel microarrays, we constructed the Tetrahymena gene network (TGN) using three methods: the Pearson correlation coefficient (PCC), the Spearman correlation coefficient (SCC) and the context likelihood of relatedness (CLR) algorithm. The accuracy and coverage of the three networks were evaluated using four conserved protein complexes in yeast. The CLR network with a Z-score threshold 3.49 was determined to be the most robust. The TGN was partitioned, and 55 modules were found. In addition, analysis of the arbitrarily determined 1200 hubs showed that these hubs could be sorted into six groups according to their expression profiles. We also investigated human disease orthologs in Tetrahymena that are missing in yeast and provide evidence indicating that some of these are involved in the same process in Tetrahymena as in human. Conclusions/Significance This study constructed a Tetrahymena gene network, provided new insights to the properties of this biological network, and presents an important resource to study Tetrahymena genes at the pathway level.


BMC Evolutionary Biology | 2010

Genome-wide identification and evolution of ATP-binding cassette transporters in the ciliate Tetrahymena thermophila : A case of functional divergence in a multigene family

Jie Xiong; Lifang Feng; Dongxia Yuan; Chengjie Fu; Wei Miao

BackgroundIn eukaryotes, ABC transporters that utilize the energy of ATP hydrolysis to expel cellular substrates into the environment are responsible for most of the efflux from cells. Many members of the superfamily of ABC transporters have been linked with resistance to multiple drugs or toxins. Owing to their medical and toxicological importance, members of the ABC superfamily have been studied in several model organisms and warrant examination in newly sequenced genomes.ResultsA total of 165 ABC transporter genes, constituting a highly expanded superfamily relative to its size in other eukaryotes, were identified in the macronuclear genome of the ciliate Tetrahymena thermophila. Based on ortholog comparisons, phylogenetic topologies and intron characterizations, each highly expanded ABC transporter family of T. thermophila was classified into several distinct groups, and hypotheses about their evolutionary relationships are presented. A comprehensive microarray analysis revealed divergent expression patterns among the members of the ABC transporter superfamily during different states of physiology and development. Many of the relatively recently formed duplicate pairs within individual ABC transporter families exhibit significantly different expression patterns. Further analysis showed that multiple mechanisms have led to functional divergence that is responsible for the preservation of duplicated genes.ConclusionGene duplications have resulted in an extensive expansion of the superfamily of ABC transporters in the Tetrahymena genome, making it the largest example of its kind reported in any organism to date. Multiple independent duplications and subsequent divergence contributed to the formation of different families of ABC transporter genes. Many of the members within a gene family exhibit different expression patterns. The combination of gene duplication followed by both sequence divergence and acquisition of new patterns of expression likely plays a role in the adaptation of Tetrahymen a to its environment.


Scientific Reports | 2015

Genome of the facultative scuticociliatosis pathogen Pseudocohnilembus persalinus provides insight into its virulence through horizontal gene transfer

Jie Xiong; Guangying Wang; Jun Cheng; Miao Tian; Xuming Pan; Alan Warren; Chuanqi Jiang; Dongxia Yuan; Wei Miao

Certain ciliates of the subclass Scuticociliatia (scuticociliates) are facultative parasites of fishes in which they cause a suite of diseases collectively termed scuticociliatosis. Hitherto, comparatively little was known about genetics and genomics of scuticociliates or the mechanism of scuticociliatosis. In this study, a laboratory culture of the facultatively pathogenic scuticociliate Pseudocohnilembus persalinus was established and its genome sequenced, giving the first genome of a marine ciliate. Genome-wide horizontal gene transfer (HGT) analysis showed P. persalinus has acquired many unique prokaryote-derived genes that potentially contribute to the virulence of this organism, including cell adhesion, hemolysis and heme utilization genes. These findings give new insights into our understanding of the pathology of scuticociliates.


Aquatic Toxicology | 2014

Identification and characterization of the arsenite methyltransferase from a protozoan, Tetrahymena pyriformis.

Jun Ye; Yue Chang; Yu Yan; Jie Xiong; Xi-Mei Xue; Dongxia Yuan; Guo-Xin Sun; Yong-Guan Zhu; Wei Miao

Arsenic (As) methylation in aquatic microbes plays a major role in the biogeochemistry of As. Protozoa, especially the free-living freshwater species, are important players in aquatic ecological health. In this study, an arsenite (As(III)) methyltransferase, TpyArsM, was identified and characterized in a free-living protozoan, Tetrahymena pyriformis. In order to confirm its function, TpyarsM gene was knocked-out in Tetrahymena and was also heterologously expressed in hypersensitive E. coli; these events resulted in expected decreases in As tolerance and methylation ability, respectively. In-vitro tests revealed that purified TpyArsM protein methylated inorganic As to mono- and di- methylarsenate, and also had the novel property of producing trimethylarsenite (TMA(III)) and dimethylarsine (Me2AsH) gases. This new methyltransferase gene, identified in a species near the base of the food web, has enriched our knowledge of As methyltransferases and has great potential for bioremediation of As-contaminated environments.


Scientific Reports | 2015

Tracing the structural evolution of eukaryotic ATP binding cassette transporter superfamily.

Jie Xiong; Jinmei Feng; Dongxia Yuan; Jun Zhou; Wei Miao

The ATP binding cassette (ABC) transporters superfamily is one of the largest classes of membrane proteins. The core of the ABC transporter protein is composed of transmembrane domains (TMDs) and nucleotide binding domains (NBD). Eukaryotes ABC transporters are classified into seven main families (ABCA to ABCG) based on sequence similarity and domain organizations. With different domain number and domain organizations, eukaryote ABC transporters show diverse structures: the single structure (NBD or TMD), the ABC2 structure (NBD-NBD), the half structure (TMD-NBD or NBD-TMD) and the full structure (TMD-NBD-TMD-NBD or NBD-TMD-NBD-TMD). However, studies on how various ABC transporter gene structures evolved is still absent. Therefore, in this study, we comprehensively investigated the structural evolution of eukaryotic ABC transporters. The seven eukaryote ABC transporter families (A to G) fell into three groups: A&G group, B,C&D group and E&F group. There were at least four times the number of NBD and TMD fusion events in the origin of the half structure transporter. Two fusion modes were found in the full and ABC2 structure origination. Based on these findings, we present a putative structural evolutionary path of eukaryote ABC transporters that will increase our understanding on their origin, divergence and function.


Aquatic Toxicology | 2014

A P450 gene associated with robust resistance to DDT in ciliated protozoan, Tetrahymena thermophila by efficient degradation

Lifang Feng; Chengjie Fu; Dongxia Yuan; Wei Miao

Analysis of metabolic mechanisms of dichlorodiphenyltrichloroethane (DDT) accumulation and degradation in microorganisms, which could be used to reduce its hazard to higher organisms at the higher in the food chain, have not been investigated. Robust resistance to DDT (grows well in 256 mg/L DDT) and a surprising ability to degrade DDT (more than 70% DDT within 4h) were found in the ciliated protozoan Tetrahymena thermophila. A P450 gene (CYP5013C2) was found to respond specifically to DDT treatment. In the presence of 256 mg/L DDT, cells with overexpressing CYP5013C2 (p450-OE) grew faster and degraded DDT more efficiently than wild-type (WT) cells, while cells with CYP5013C2 partially knocked down (p450-KD) grew slower and exhibited reduced ability to degrade DDT compared to WT cells. Both dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD) were detected in cells after exposure to DDT, and the concentration of DDD in the p450-OE strain gradually decreased from 0.5 to 4h. Thus, we argue that this P450 gene (CYP5013C2), by efficiently degrading DDT to DDD, is associated with robust resistance to DDT in Tetrahymena, and that a strain overexpressing this gene has the potential to serve as bioreactor that degrades environmental DDT.

Collaboration


Dive into the Dongxia Yuan's collaboration.

Top Co-Authors

Avatar

Wei Miao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jie Xiong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chengjie Fu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yue Chang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lifang Feng

Zhejiang Gongshang University

View shared research outputs
Top Co-Authors

Avatar

Miao Tian

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guangying Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jinmei Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chuanqi Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guanglong Liu

Northwest Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge