Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dongxiao He is active.

Publication


Featured researches published by Dongxiao He.


international conference on tools with artificial intelligence | 2010

Genetic Algorithm with Local Search for Community Mining in Complex Networks

Di Jin; Dongxiao He; Dayou Liu; Carlos Baquero

Detecting communities from complex networks has triggered considerable attention in several application domains. Targeting this problem, a local search based genetic algorithm (GALS) which employs a graph-based representation (LAR) has been proposed in this work. The core of the GALS is a local search based mutation technique. Aiming to overcome the drawbacks of the existing mutation methods, a concept called marginal gene has been proposed, and then an effective and efficient mutation method, combined with a local search strategy which is based on the concept of marginal gene, has also been proposed by analyzing the modularity function. Moreover, in this paper the percolation theory on ER random graphs is employed to further clarify the effectiveness of LAR presentation; A Markov random walk based method is adopted to produce an accurate and diverse initial population; the solution space of GALS will be significantly reduced by using a graph based mechanism. The proposed GALS has been tested on both computer-generated and real-world networks, and compared with some competitive community mining algorithms. Experimental result has shown that GALS is highly effective and efficient for discovering community structure.


Scientific Reports | 2013

ERRATUM: Identifying overlapping communities as well as hubs and outliers via nonnegative matrix factorization

Xiaochun Cao; Xiao Wang; Di Jin; Yixin Cao; Dongxiao He

Community detection is important for understanding networks. Previous studies observed that communities are not necessarily disjoint and might overlap. It is also agreed that some outlier vertices participate in no community, and some hubs in a community might take more important roles than others. Each of these facts has been independently addressed in previous work. But there is no algorithm, to our knowledge, that can identify these three structures altogether. To overcome this limitation, we propose a novel model where vertices are measured by their centrality in communities, and define the identification of overlapping communities, hubs, and outliers as an optimization problem, calculated by nonnegative matrix factorization. We test this method on various real networks, and compare it with several competing algorithms. The experimental results not only demonstrate its ability of identifying overlapping communities, hubs, and outliers, but also validate its superior performance in terms of clustering quality.


Journal of Statistical Mechanics: Theory and Experiment | 2012

Discovering link communities in complex networks by exploiting link dynamics

Dongxiao He; Dayou Liu; Weixiong Zhang; Di Jin; Bo Yang

Discovery of communities in complex networks is a fundamental data analysis problem with applications in various domains. Most of the existing approaches have focused on discovering communities of nodes, while recent studies have shown great advantages and utilities of the knowledge of communities of links in networks. From this new perspective, we propose a link dynamics based algorithm, called UELC, for identifying link communities of networks. In UELC, the stochastic process of a link?node?link random walk is employed to unfold an embedded bipartition structure of links in a network. The local mixing properties of the Markov chain underlying the random walk are then utilized to extract two emerging link communities. Further, the random walk and the bipartitioning processes are wrapped in an iterative subdivision strategy to recursively identify link partitions that segregate the network links into multiple subdivisions. We evaluate the performance of the new method on synthetic benchmarks and demonstrate its utility on real-world networks. Our experimental results show that our method is highly effective for discovering link communities in complex networks. As a comparison, we also extend UELC to extracting communities of nodes, and show that it is effective for node community identification.


international conference on computer sciences and convergence information technology | 2009

Genetic Algorithm with Ensemble Learning for Detecting Community Structure in Complex Networks

Dongxiao He; Zhe Wang; Bin Yang; Chunguang Zhou

Community detection in complex networks is a topic of considerable recent interest within the scientific community. For dealing with the problem that genetic algorithm are hardly applied to community detection, we propose a genetic algorithm with ensemble learning (GAEL) for detecting community structure in complex networks. GAEL replaces its traditional crossover operator with a multi-individual crossover operator based on ensemble learning. Therefore, GAEL can avoid the problems that are brought by traditional crossover operator which is only able to mix string blocks of different individuals, but not able to recombine clustering contexts of different individuals into new better ones. In addition, the local search strategy, which makes mutated node be placed into the community where most of its neighbors are, is used in mutation operator. At last, a Markov random walk based method is used to initialize population in this paper, and it can provide us a population of accurate and diverse clustering solutions. Those diverse and accurate individuals are suitable for ensemble learning based multi-individual crossover operator. The proposed GAEL is tested on both computer-generated and real-world networks, and compared with current representative algorithms for community detection in complex networks. Experimental results demonstrate that GAEL is highly effective at discovering community structure.


PLOS ONE | 2014

Link Community Detection Using Generative Model and Nonnegative Matrix Factorization

Dongxiao He; Di Jin; Carlos Baquero; Dayou Liu

Discovery of communities in complex networks is a fundamental data analysis problem with applications in various domains. While most of the existing approaches have focused on discovering communities of nodes, recent studies have shown the advantages and uses of link community discovery in networks. Generative models provide a promising class of techniques for the identification of modular structures in networks, but most generative models mainly focus on the detection of node communities rather than link communities. In this work, we propose a generative model, which is based on the importance of each node when forming links in each community, to describe the structure of link communities. We proceed to fit the model parameters by taking it as an optimization problem, and solve it using nonnegative matrix factorization. Thereafter, in order to automatically determine the number of communities, we extend the above method by introducing a strategy of iterative bipartition. This extended method not only finds the number of communities all by itself, but also obtains high efficiency, and thus it is more suitable to deal with large and unexplored real networks. We test this approach on both synthetic benchmarks and real-world networks including an application on a large biological network, and compare it with two highly related methods. Results demonstrate the superior performance of our approach over competing methods for the detection of link communities.


Information Sciences | 2017

Semi-supervised community detection based on non-negative matrix factorization with node popularity

Xiao Liu; Wenjun Wang; Dongxiao He; Pengfei Jiao; Di Jin; Carlo Vittorio Cannistraci

Based on the ideas of graph regularization, we present a semi-supervised and NMF-based model to utilize the prior information of networks.By introducing the parameters of node popularities, we propose a refined PSSNMF model, which is particularly suitable for networks with large degree heterogeneity and unbalanced community structure.The prior information with node popularity being introduced into the model is more effective than being directly encoded into the adjacent matrix. A plethora of exhaustive studies have proved that the community detection merely based on topological information often leads to relatively low accuracy. Several approaches aim to achieve performance improvement by utilizing the background information. But they ignore the effect of node degrees on the availability of prior information. In this paper, by combining the idea of graph regularization with the pairwise constraints, we present a semi-supervised non-negative matrix factorization (SSNMF) model for community detection. And then, to alleviate the influence of the heterogeneity of node degrees and community sizes, we propose an improved SSNMF model by introducing the node popularity, namely PSSNMF, which helps to utilize the prior information more effectively. At last, the extensive experiments on both artificial and real-world networks show that the proposed method improves, as expected, the accuracy of community detection, especially on networks with large degree heterogeneity and unbalanced community structure.


Scientific Reports | 2015

Identification of hybrid node and link communities in complex networks.

Dongxiao He; Di Jin; Zheng Chen; Weixiong Zhang

Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.


Knowledge Based Systems | 2016

Autonomous overlapping community detection in temporal networks

Wenjun Wang; Pengfei Jiao; Dongxiao He; Di Jin; Lin Pan; Bogdan Gabrys

A wide variety of natural or artificial systems can be modeled as time-varying or temporal networks. To understand the structural and functional properties of these time-varying networked systems, it is desirable to detect and analyze the evolving community structure. In temporal networks, the identified communities should reflect the current snapshot network, and at the same time be similar to the communities identified in history or say the previous snapshot networks. Most of the existing approaches assume that the number of communities is known or can be obtained by some heuristic methods. This is unsuitable and complicated for most real world networks, especially temporal networks. In this paper, we propose a Bayesian probabilistic model, named Dynamic Bayesian Nonnegative Matrix Factorization (DBNMF), for automatic detection of overlapping communities in temporal networks. Our model can not only give the overlapping community structure based on the probabilistic memberships of nodes in each snapshot network but also automatically determines the number of communities in each snapshot network based on automatic relevance determination. Thereafter, a gradient descent algorithm is proposed to optimize the objective function of our DBNMF model. The experimental results using both synthetic datasets and real-world temporal networks demonstrate that the DBNMF model has superior performance compared with two widely used methods, especially when the number of communities is unknown and when the network is highly sparse.


Journal of Statistical Mechanics: Theory and Experiment | 2013

Extending a configuration model to find communities in complex networks

Di Jin; Dongxiao He; Qinghua Hu; Carlos Baquero; Bo Yang

Discovery of communities in complex networks is a fundamental data analysis task in various domains. Generative models are a promising class of techniques for identifying modular properties from networks, which has been actively discussed recently. However, most of them cannot preserve the degree sequence of networks, which will distort the community detection results. Rather than using a blockmodel as most current works do, here we generalize a configuration model, namely, a null model of modularity, to solve this problem. Towards decomposing and combining sub-graphs according to the soft community memberships, our model incorporates the ability to describe community structures, something the original model does not have. Also, it has the property, as with the original model, that it fixes the expected degree sequence to be the same as that of the observed network. We combine both the community property and degree sequence preserving into a single unified model, which gives better community results compared with other models. Thereafter, we learn the model using a technique of nonnegative matrix factorization and determine the number of communities by applying consensus clustering. We test this approach both on synthetic benchmarks and on real-world networks, and compare it with two similar methods. The experimental results demonstrate the superior performance of our method over competing methods in detecting both disjoint and overlapping communities.


International Journal of Computational Intelligence Systems | 2013

Genetic Algorithm with a Local Search Strategy for Discovering Communities in Complex Networks

Dayou Liu; Di Jin; Carlos Baquero; Dongxiao He; Bo Yang; Qiangyuan Yu

Abstract In order to further improve the performance of current genetic algorithms aiming at discovering communities, a local search based genetic algorithm (GALS) is here proposed. The core of GALS is a local search based mutation technique. In order to overcome the drawbacks of traditional mutation methods, the paper develops the concept of marginal gene and then the local monotonicity of modularity function Q is deduced from each nodes local view. Based on these two elements, a new mutation method combined with a local search strategy is presented. GALS has been evaluated on both synthetic benchmarks and several real networks, and compared with some presently competing algorithms. Experimental results show that GALS is highly effective and efficient for discovering community structure.

Collaboration


Dive into the Dongxiao He's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaochun Cao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liang Yang

Tianjin University of Commerce

View shared research outputs
Researchain Logo
Decentralizing Knowledge