Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dongxiao Zhuang is active.

Publication


Featured researches published by Dongxiao Zhuang.


Neurosurgery | 2009

Transsphenoidal pituitary macroadenomas resection guided by PoleStar N20 low-field intraoperative magnetic resonance imaging: comparison with early postoperative high-field magnetic resonance imaging.

Jinsong Wu; Xuefei Shou; Chengjun Yao; Yongfei Wang; Dongxiao Zhuang; Ying Mao; Shiqi Li; Liangfu Zhou

OBJECTIVETo evaluate the applicability of low-field intraoperative magnetic resonance imaging (iMRI) during transsphenoidal surgery of pituitary macroadenomas. METHODSFifty-five transsphenoidal surgeries were performed for macroadenomas (modified Hardys Grade II–IV) resections. All of the surgical processes were guided by real-time updated contrast T1-weighted coronal and sagittal images, which were acquired with 0.15 Tesla PoleStar N20 iMRI (Medtronic Navigation, Louisville, CO). The definitive benefits as well as major drawbacks of low-field iMRI in transsphenoidal surgery were assessed with respect to intraoperative imaging, tumor resection control, comparison with early postoperative high-field magnetic resonance imaging, and follow-up outcomes. RESULTSIntraoperative imaging revealed residual tumor and guided extended tumor resection in 17 of 55 cases. As a result, the percentage of gross total removal of macroadenomas increased from 58.2% to 83.6%. The accuracy of imaging evaluation of low-field iMRI was 81.8%, compared with early postoperative high-field MRI (Correlation coefficient, 0.677; P < 0.001). A significantly lower accuracy was identified with low-field iMRI in 6 cases with cavernous sinus invasion (33.3%) in contrast to the 87.8% found with other sites (Fishers exact test, P < 0.001). CONCLUSIONThe PoleStar N20 low-field iMRI navigation system is a promising tool for safe, minimally invasive, endonasal, transsphenoidal pituitary macroadenomas resection. It enables neurosurgeons to control the extent of tumor resection, particularly for suprasellar tumors, ensuring surgical accuracy and safety, and leading to a decreased likelihood of repeat surgeries. However, this technology is still not satisfying in estimating the amount of the parasellar residual tumor invading into cavernous sinus, given the false or uncertain images generated by low-field iMRI in this region, which are difficult to discriminate between tumor remnant and blood within the venous sinus.


Neurosurgery | 2012

Clinical application of motor pathway mapping using diffusion tensor imaging tractography and intraoperative direct subcortical stimulation in cerebral glioma surgery: a prospective cohort study.

Fengping Zhu; Jinsong Wu; Yan-Yan Song; Chengjun Yao; Dongxiao Zhuang; Geng Xu; Weijun Tang; Zhiyong Qin; Ying Mao; Liangfu Zhou

BACKGROUND Glioma surgery in eloquent areas remains a challenge because of the risk of postoperative motor deficits. OBJECTIVE To prospectively evaluate the efficiency of using a combination of diffusion tensor imaging (DTI) tractography functional neuronavigation and direct subcortical stimulation (DsCS) to yield a maximally safe resection of cerebral glioma in eloquent areas. METHODS A prospective cohort study was conducted in 58 subjects with an initial diagnosis of primary cerebral glioma within or adjacent to the pyramidal tract (PT). The white matter beneath the resection cavity was stimulated along the PT, which was visualized with DTI tractography. The intercept between the PT border and DsCS site was measured. The sensitivity and specificity of DTI tractography for PT mapping were evaluated. The efficiency of the combined use of both techniques on motor function preservation was assessed. RESULTS Postoperative analysis showed gross total resection in 40 patients (69.0%). Seventeen patients (29.3%) experienced postoperative worsening; 1-month motor deficit was observed in 6 subjects (10.3%). DsCS verified a high concordance rate with DTI tractography for PT mapping. The sensitivity and specificity of DTI were 92.6% and 93.2%, respectively. The intercepts between positive DsCS sites and imaged PTs were 2.0 to 14.7 mm (5.2 ± 2.2 mm). The 6-month Karnofsky performance scale scores in 50 postoperative subjects were significantly increased compared with their preoperative scores. CONCLUSION DTI tractography is effective but not completely reliable in delineating the descending motor pathways. Integration of DTI and DsCS favors patient-specific surgery for cerebral glioma in eloquent areas.


Acta Neurochirurgica | 2012

The relationship between Cho/NAA and glioma metabolism: implementation for margin delineation of cerebral gliomas

Jun Guo; Chengjun Yao; Hong Chen; Dongxiao Zhuang; Weijun Tang; Guang Ren; Yin Wang; Jinsong Wu; Fengping Huang; Liangfu Zhou

BackgroundThe marginal delineation of gliomas cannot be defined by conventional imaging due to their infiltrative growth pattern. Here we investigate the relationship between changes in glioma metabolism by proton magnetic resonance spectroscopic imaging (1H-MRSI) and histopathological findings in order to determine an optimal threshold value of choline/N-acetyl-aspartate (Cho/NAA) that can be used to define the extent of glioma spread.MethodEighteen patients with different grades of glioma were examined using 1H-MRSI. Needle biopsies were performed under the guidance of neuronavigation prior to craniotomy. Intraoperative magnetic resonance imaging (MRI) was performed to evaluate the accuracy of sampling. Haematoxylin and eosin, and immunohistochemical staining with IDH1, MIB-1, p53, CD34 and glial fibrillary acidic protein (GFAP) antibodies were performed on all samples. Logistic regression analysis was used to determine the relationship between Cho/NAA and MIB-1, p53, CD34, and the degree of tumour infiltration. The clinical threshold ratio distinguishing tumour tissue in high-grade (grades III and IV) glioma (HGG) and low-grade (grade II) glioma (LGG) was calculated.ResultsIn HGG, higher Cho/NAA ratios were associated with a greater probability of higher MIB-1 counts, stronger CD34 expression, and tumour infiltration. Ratio threshold values of 0.5, 1.0, 1.5 and 2.0 appeared to predict the specimens containing the tumour with respective probabilities of 0.38, 0.60, 0.79, 0.90 in HGG and 0.16, 0.39, 0.67, 0.87 in LGG.ConclusionsHGG and LGG exhibit different spectroscopic patterns. Using 1H-MRSI to guide the extent of resection has the potential to improve the clinical outcome of glioma surgery.


Journal of Clinical Neuroscience | 2013

Awake language mapping and 3-Tesla intraoperative MRI-guided volumetric resection for gliomas in language areas.

Junfeng Lu; Jinsong Wu; Chengjun Yao; Dongxiao Zhuang; Tianming Qiu; Xiaobing Hu; Jie Zhang; Xiu Gong; Weimin Liang; Ying Mao; Liangfu Zhou

The use of both awake surgery and intraoperative MRI (iMRI) has been reported to optimize the maximal safe resection of gliomas. However, there has been little research into combining these two demanding procedures. We report our unique experience with, and methodology of, awake surgery in a movable iMRI system, and we quantitatively evaluate the contribution of the combination on the extent of resection (EOR) and functional outcome of patients with gliomas involving language areas. From March 2011 to November 2011, 30 consecutive patients who underwent awake surgery with iMRI guidance were prospectively investigated. The EOR was assessed by volumetric analysis. Language assessment was conducted before surgery and 1 week, 1 month, 3 months and 6 months after surgery using the Aphasia Battery of Chinese. Awake language mapping integrated with 3.0 Tesla iMRI was safely performed for all patients. An additional resection was conducted in 11 of 30 patients (36.7%) after iMRI. The median EOR significantly increased from 92.5% (range, 75.1-97.0%) to 100% (range, 92.6-100%) as a result of iMRI (p<0.01). Gross total resection was achieved in 18 patients (60.0%), and in seven of those patients (23.3%), the gross total resection could be attributed to iMRI. A total of 12 patients (40.0%) suffered from transient language deficits; however, only one (3.3%) patient developed a permanent deficit. This study demonstrates the potential utility of combining awake craniotomy with iMRI; it is safe and reliable to perform awake surgery using a movable iMRI.


Proteome Science | 2010

Proteomic analysis of prolactinoma cells by immuno-laser capture microdissection combined with online two-dimensional nano-scale liquid chromatography/mass spectrometry

Yingchao Liu; Jinsong Wu; Guoquan Yan; Ruiping Hou; Dongxiao Zhuang; Luping Chen; Qi Pang; Jianhong Zhu

BackgroundPituitary adenomas, the third most common intracranial tumor, comprise nearly 16.7% of intracranial neoplasm and 25%-44% of pituitary adenomas are prolactinomas. Prolactinoma represents a complex heterogeneous mixture of cells including prolactin (PRL), endothelial cells, fibroblasts, and other stromal cells, making it difficult to dissect the molecular and cellular mechanisms of prolactin cells in pituitary tumorigenesis through high-throughout-omics analysis. Our newly developed immuno-laser capture microdissection (LCM) method would permit rapid and reliable procurement of prolactin cells from this heterogeneous tissue. Thus, prolactin cell specific molecular events involved in pituitary tumorigenesis and cell signaling can be approached by proteomic analysis.ResultsProteins from immuno-LCM captured prolactin cells were digested; resulting peptides were separated by two dimensional-nanoscale liquid chromatography (2D-nanoLC/MS) and characterized by tandem mass spectrometry. All MS/MS spectrums were analyzed by SEQUEST against the human International Protein Index database and a specific prolactinoma proteome consisting of 2243 proteins was identified. This collection of identified proteins by far represents the largest and the most comprehensive database of proteome for prolactinoma. Category analysis of the proteome revealed a widely unbiased access to various proteins with diverse functional characteristics.ConclusionsThis manuscript described a more comprehensive proteomic profile of prolactinomas compared to other previous published reports. Thanks to the application of immuno-LCM combined with online two-dimensional nano-scale liquid chromatography here permitted identification of more proteins and, to our best knowledge, generated the largest prolactinoma proteome. This enlarged proteome would contribute significantly to further understanding of prolactinoma tumorigenesis which is crucial to the management of prolactinomas.


Journal of Neurosurgery | 2016

Metabolic approach for tumor delineation in glioma surgery: 3D MR spectroscopy image–guided resection

Jie Zhang; Dongxiao Zhuang; Chengjun Yao; Ching-po Lin; Tian-Liang Wang; Zhiyong Qin; Jinsong Wu

OBJECT The extent of resection is one of the most essential factors that influence the outcomes of glioma resection. However, conventional structural imaging has failed to accurately delineate glioma margins because of tumor cell infiltration. Three-dimensional proton MR spectroscopy ((1)H-MRS) can provide metabolic information and has been used in preoperative tumor differentiation, grading, and radiotherapy planning. Resection based on glioma metabolism information may provide for a more extensive resection and yield better outcomes for glioma patients. In this study, the authors attempt to integrate 3D (1)H-MRS into neuronavigation and assess the feasibility and validity of metabolically based glioma resection. METHODS Choline (Cho)-N-acetylaspartate (NAA) index (CNI) maps were calculated and integrated into neuronavigation. The CNI thresholds were quantitatively analyzed and compared with structural MRI studies. Glioma resections were performed under 3D (1)H-MRS guidance. Volumetric analyses were performed for metabolic and structural images from a low-grade glioma (LGG) group and high-grade glioma (HGG) group. Magnetic resonance imaging and neurological assessments were performed immediately after surgery and 1 year after tumor resection. RESULTS Fifteen eligible patients with primary cerebral gliomas were included in this study. Three-dimensional (1)H-MRS maps were successfully coregistered with structural images and integrated into navigational system. Volumetric analyses showed that the differences between the metabolic volumes with different CNI thresholds were statistically significant (p < 0.05). For the LGG group, the differences between the structural and the metabolic volumes with CNI thresholds of 0.5 and 1.5 were statistically significant (p = 0.0005 and 0.0129, respectively). For the HGG group, the differences between the structural and metabolic volumes with CNI thresholds of 0.5 and 1.0 were statistically significant (p = 0.0027 and 0.0497, respectively). All patients showed no tumor progression at the 1-year follow-up. CONCLUSIONS This study integrated 3D MRS maps and intraoperative navigation for glioma margin delineation. Optimum CNI thresholds were applied for both LGGs and HGGs to achieve resection. The results indicated that 3D (1)H-MRS can be integrated with structural imaging to provide better outcomes for glioma resection.


Analytica Chimica Acta | 2011

Shotgun proteomic analysis of microdissected postmortem human pituitary using complementary two-dimensional liquid chromatography coupled with tandem mass spectrometer

Yingchao Liu; Dongxiao Zhuang; Ruiping Hou; Jian Li; Guangming Xu; Tao Song; Luping Chen; Guoquan Yan; Qi Pang; Jianhong Zhu

The pituitary is responsible for multiple homeostatic functions including metabolism, growth and reproduction. Proteome analysis offers an efficient approach for a comprehensive analysis of pituitary protein expression. The pituitary is usually acquired from postmortem specimens, which may potentially affect the proteome profile by proteolysis. The aim of this study was to determine whether the postmortem pituitary could be used in proteomic analysis combining with Laser capture microdissection (LCM). Digested peptides from LCM captured prolactin (PRL) cells were separated by two dimensional-nanoscale liquid chromatography (2D-nanoLC/MS) and characterized by tandem mass spectrometry (MS). All MS/MS spectrums were searched by SEQUEST and a proteome of 1660 proteins was identified. Category analysis of the proteome revealed an extensive unbiased access to cell component proteins with diverse functional characteristics. The results demonstrated the ability of using 2D-nanoLC/MS to perform sensitive proteomic analysis on limited protein quantities through microdissection. Detailed comparisons between the proteome in question and the one derived from the prolactinoma controls at peptide and protein levels indicated that the two proteomes had similar characters. Overall, our results revealed for the first time the possibility of use of postmortem human pituitary for proteomic research which is important for further studies on disease biomarker identification and molecular mechanisms of prolactinoma tumorigenesis.


Colloids and Surfaces B: Biointerfaces | 2009

Immuno-laser capture microdissection of frozen prolactioma sections to prepare proteomic samples

Yingchao Liu; Jinsong Wu; Sixiu Liu; Dongxiao Zhuang; Yongfei Wang; Xuefei Shou; Jianhong Zhu

Laser capture microdissection (LCM) technology combined with immunohistochemistry (immuno-LCM) is a valuable tool to obtain specific target cell populations and therefore this technique enables more accurate proteomic profile. In this study, we optimized the regular immuno-LCM technique to isolate and stain pure prolactin cells from either normal human pituitary (n=6) or prolactioma (n=11). Compared with the routine procedure, more intense and specific staining could be obtained when sections were pretreated with 0.2% Triton X-100 for 4 min. Interestingly, longer pretreatment (0.2% Triton X-100 for 10 min) or higher concentration (2% Triton X-100 for 4 and 10 min) greatly impaired labeling intensity and cell shape. Further scanning electron microscope study revealed that the component extracted from the cell surface by Triton X-100 was lipid. Using the optimized immuno-LCM technique, more pure prolactin cells could be isolated and prepared for further proteomic analysis. Taken together, we reported an optimized immuno-LCM technique that could effectively dissect pure target cells in different type pituitary adenomas for further proteomics analysis.


International Journal of Neuroscience | 2016

The clinical utility of multimodal MR image-guided needle biopsy in cerebral gliomas

Chengjun Yao; Shunzeng Lv; Hong Chen; Weijun Tang; Jun Guo; Dongxiao Zhuang; Nikos Chrisochoides; Jinsong Wu; Ying Mao; Liangfu Zhou

Purpose: Our aim was to evaluate the diagnostic value of multimodal Magnetic Resonance (MR) Image in the stereotactic biopsy of cerebral gliomas, and investigate its implications. Materials and Methods: Twenty-four patients with cerebral gliomas underwent 1H Magnetic Resonance Spectroscopy (1H-MRS)- and intraoperative Magnetic Resonance Imaging (iMRI)-supported stereotactic biopsy, and 23 patients underwent only the preoperative MRI-guided biopsy. The diagnostic yield, morbidity and mortality rates were analyzed. In addition, 20 patients underwent subsequent tumor resection, thus the diagnostic accuracy of the biopsy was further evaluated. Results: The diagnostic accuracies of biopsies evaluated by tumor resection in the trial groups were better than control groups (92.3% and 42.9%, respectively, p = 0.031). The diagnostic yield in the trial groups was better than the control groups, but the difference was not statistically significant (100% and 82.6%, respectively, p = 0.05). The morbidity and mortality rates were similar in both groups. Conclusions: Multimodal MR image-guided glioma biopsy is practical and valuable. This technique can increase the diagnostic accuracy in the stereotactic biopsy of cerebral gliomas. Besides, it is likely to increase the diagnostic yield but requires further validation.


Computer Methods and Programs in Biomedicine | 2014

Augment low-field intra-operative MRI with preoperative MRI using a hybrid non-rigid registration method

Chengjun Yao; Yixun Liu; Jianhua Yao; Dongxiao Zhuang; Jinsong Wu; Zhiyong Qin; Ying Mao; Liangfu Zhou

BACKGROUND Preoperatively acquired diffusion tensor image (DTI) and blood oxygen level dependent (BOLD) have been proved to be effective in providing more anatomical and functional information; however, the brain deformation induced by brain shift and tumor resection severely impairs the correspondence between the image space and the patient space in image-guided neurosurgery. METHOD To address the brain deformation, we developed a hybrid non-rigid registration method to register high-field preoperative MRI with low-field intra-operative MRI in order to recover the deformation induced by brain shift and tumor resection. The registered DTI and BOLD are fused with low-field intra-operative MRI for image-guided neurosurgery. RESULTS The proposed hybrid registration method was evaluated by comparing the landmarks predicted by the hybrid registration method with the landmarks identified in the low-field intra-operative MRI for 10 patients. The prediction error of the hybrid method is 1.92±0.54 mm, and the compensation accuracy is 74.3±5.0%. Compared to the landmarks far from the resection region, those near the resection region demonstrated a higher compensation accuracy (P-value=.003) although these landmarks had larger initial displacements. CONCLUSIONS The proposed hybrid registration method is able to bring preoperatively acquired BOLD and DTI into the operating room and compensate for the deformation to augment low-field intra-operative MRI with rich anatomical and functional information.

Collaboration


Dive into the Dongxiao Zhuang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge