Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dongxing Zhu is active.

Publication


Featured researches published by Dongxing Zhu.


PLOS ONE | 2011

The Appearance and Modulation of Osteocyte Marker Expression during Calcification of Vascular Smooth Muscle Cells

Dongxing Zhu; Neil Mackenzie; José Luis Millán; Colin Farquharson; Vicky MacRae

Background Vascular calcification is an indicator of elevated cardiovascular risk. Vascular smooth muscle cells (VSMCs), the predominant cell type involved in medial vascular calcification, can undergo phenotypic transition to both osteoblastic and chondrocytic cells within a calcifying environment. Methodology/Principal Findings In the present study, using in vitro VSMC calcification studies in conjunction with ex vivo analyses of a mouse model of medial calcification, we show that vascular calcification is also associated with the expression of osteocyte phenotype markers. As controls, the terminal differentiation of murine calvarial osteoblasts into osteocytes was induced in vitro in the presence of calcifying medium (containing ß-glycerophosphate and ascorbic acid), as determined by increased expression of the osteocyte markers DMP-1, E11 and sclerostin. Culture of murine aortic VSMCs under identical conditions confirmed that the calcification of these cells can also be induced in similar calcifying medium. Calcified VSMCs had increased alkaline phosphatase activity and PiT-1 expression, which are recognized markers of vascular calcification. Expression of DMP-1, E11 and sclerostin was up-regulated during VSMC calcification in vitro. Increased protein expression of E11, an early osteocyte marker, and sclerostin, expressed by more mature osteocytes was also observed in the calcified media of Enpp1−/− mouse aortic tissue. Conclusions/Significance This study has demonstrated the up-regulation of key osteocytic molecules during the vascular calcification process. A fuller understanding of the functional role of osteocyte formation and specifically sclerostin and E11 expression in the vascular calcification process may identify novel potential therapeutic strategies for clinical intervention.


PLOS ONE | 2012

Altered Bone Development and an Increase in FGF-23 Expression in Enpp1−/− Mice

Neil Mackenzie; Dongxing Zhu; Elspeth Milne; Rob van't Hof; Aline Martin; Darryl L. Quarles; José Luis Millán; Colin Farquharson; Vicky MacRae

Nucleotide pyrophosphatase phosphodiesterase 1 (NPP1) is required for the conversion of extracellular ATP into inorganic pyrophosphate (PPi), a recognised inhibitor of hydroxyapatite (HA) crystal formation. A detailed phenotypic assessment of a mouse model lacking NPP1 (Enpp1−/−) was completed to determine the role of NPP1 in skeletal and soft tissue mineralization in juvenile and adult mice. Histopathological assessment of Enpp1−/− mice at 22 weeks of age revealed calcification in the aorta and kidney and ectopic cartilage formation in the joints and spine. Radiographic assessment of the hind-limb showed hyper-mineralization in the talocrural joint and hypo-mineralization in the femur and tibia. MicroCT analysis of the tibia and femur disclosed altered trabecular architecture and bone geometry at 6 and 22 weeks of age in Enpp1−/− mice. Trabecular number, trabecular bone volume, structure model index, trabecular and cortical thickness were all significantly reduced in tibiae and femurs from Enpp1−/− mice (P<0.05). Bone stiffness as determined by 3-point bending was significantly reduced in Enpp1−/− tibiae and femurs from 22-week-old mice (P<0.05). Circulating phosphate and calcium levels were reduced (P<0.05) in the Enpp1−/− null mice. Plasma levels of osteocalcin were significantly decreased at 6 weeks of age (P<0.05) in Enpp1−/− mice, with no differences noted at 22 weeks of age. Plasma levels of CTx (Ratlaps™) and the phosphaturic hormone FGF-23 were significantly increased in the Enpp1−/− mice at 22 weeks of age (P<0.05). Fgf-23 messenger RNA expression in cavarial osteoblasts was increased 12-fold in Enpp1−/− mice compared to controls. These results indicate that Enpp1−/− mice are characterized by severe disruption to the architecture and mineralization of long-bones, dysregulation of calcium/phosphate homeostasis and changes in Fgf-23 expression. We conclude that NPP1 is essential for normal bone development and control of physiological bone mineralization.


Frontiers in Endocrinology | 2012

Mechanisms and Clinical Consequences of Vascular Calcification

Dongxing Zhu; Neil Mackenzie; Colin Farquharson; Vicky MacRae

Vascular calcification has severe clinical consequences and is considered an accurate predictor of future adverse cardiovascular events, including myocardial infarction and stroke. Previously vascular calcification was thought to be a passive process which involved the deposition of calcium and phosphate in arteries and cardiac valves. However, recent studies have shown that vascular calcification is a highly regulated, cell-mediated process similar to bone formation. In this article, we outline the current understanding of key mechanisms governing vascular calcification and highlight the clinical consequences. By understanding better the molecular pathways and genetic circuitry responsible for the pathological mineralization process novel drug targets may be identified and exploited to combat and reduce the detrimental effects of vascular calcification on human health.


Cell Biochemistry and Function | 2014

miRNA-221 and miRNA-222 synergistically function to promote vascular calcification

Neil Mackenzie; Katherine Staines; Dongxing Zhu; Paul G. Genever; Vicky MacRae

Vascular calcification shares many similarities with skeletal mineralisation and involves the phenotypic trans‐differentiation of vascular smooth muscle cells (VSMCs) to osteoblastic cells within a calcified environment. Various microRNAs (miRs) are known to regulate cell differentiation; however, their role in mediating VSMC calcification is not fully understood. miR‐microarray analysis revealed the significant down‐regulation of a range of miRs following nine days in culture, including miR‐199b, miR‐29a, miR‐221, miR‐222 and miR‐31 (p < 0.05). Subsequent studies investigated the specific role of the miR‐221/222 family in VSMC calcification. Real‐time quantitative polymerase chain reaction data confirmed the down‐regulation of miR‐221 (32.4%; p < 0.01) and miR‐222 (15.7%; p < 0.05). VSMCs were transfected with mimics of miR‐221 and miR‐222, individually and in combination. Increased calcium deposition was observed in the combined treatment (two‐fold; p < 0.05) but not in individual treatments. Runx2 and Msx2 expression was increased during calcification, but no difference in expression was observed following transfection with miR mimics. Interestingly, miR‐221 and miR‐222 mimics induced significant changes in ectonucleotide phosphodiesterase 1 (Enpp1) and Pit‐1 expression, suggesting that these miRs may modulate VSMC calcification through cellular inorganic phosphate and pyrophosphate levels.


Molecular and Cellular Endocrinology | 2013

A protective role for FGF-23 in local defence against disrupted arterial wall integrity?

Dongxing Zhu; Neil Mackenzie; José Luis Millán; Colin Farquharson; Vicky MacRae

Increasing interest is focusing on the role of the FGF-23/Klotho axis in mediating vascular calcification. However, the underpinning mechanisms have yet to be fully elucidated. Murine VSMCs were cultured in calcifying medium for a 21 d period. FGF-23 mRNA expression was significantly up-regulated by 7d (1.63-fold; P<0.001), with a concomitant increase in protein expression. mRNA and protein expression of both FGFR1 and Klotho were confirmed. Increased FGF-23 and Klotho protein expression was also observed in the calcified media of Enpp1(-/-) mouse aortic tissue. Reduced calcium deposition was observed in calcifying VSMCs cultured with recombinant FGF-23 (10 ng/ml; 28.1% decrease; P<0.01). Calcifying VSMCs treated with PD173074, an inhibitor of FGFR1 and FGFR3, showed significantly increased calcification (50 nM; 87.8% increase; P<0.001). FGF-23 exposure induced phosphorylation of ERK1/2. Treatment with FGF-23 in combination with PD98059, an ERK1/2 inhibitor, significantly increased VSMC calcification (10 μM; 41.3% increase; P<0.01). Use of FGF-23 may represent a novel therapeutic strategy for inhibiting vascular calcification.


Journal of Bone and Mineral Research | 2013

Pharmacological inhibition of PHOSPHO1 suppresses vascular smooth muscle cell calcification.

Tina Kiffer-Moreira; Manisha C. Yadav; Dongxing Zhu; Sonoko Narisawa; Campbell Sheen; Boguslaw Stec; Nicholas D. P. Cosford; Russell Dahl; Colin Farquharson; Marc Hoylaerts; Vicky MacRae; José Luis Millán

Medial vascular calcification (MVC) is common in patients with chronic kidney disease, obesity, and aging. MVC is an actively regulated process that resembles skeletal mineralization, resulting from chondro‐osteogenic transformation of vascular smooth muscle cells (VSMCs). Here, we used mineralizing murine VSMCs to study the expression of PHOSPHO1, a phosphatase that participates in the first step of matrix vesicles‐mediated initiation of mineralization during endochondral ossification. Wild‐type (WT) VSMCs cultured under calcifying conditions exhibited increased Phospho1 gene expression and Phospho1–/– VSMCs failed to mineralize in vitro. Using natural PHOSPHO1 substrates, potent and specific inhibitors of PHOSPHO1 were identified via high‐throughput screening and mechanistic analysis and two of these inhibitors, designated MLS‐0390838 and MLS‐0263839, were selected for further analysis. Their effectiveness in preventing VSMC calcification by targeting PHOSPHO1 function was assessed, alone and in combination with a potent tissue‐nonspecific alkaline phosphatase (TNAP) inhibitor MLS‐0038949. PHOSPHO1 inhibition by MLS‐0263839 in mineralizing WT cells (cultured with added inorganic phosphate) reduced calcification in culture to 41.8% ± 2.0% of control. Combined inhibition of PHOSPHO1 by MLS‐0263839 and TNAP by MLS‐0038949 significantly reduced calcification to 20.9% ± 0.74% of control. Furthermore, the dual inhibition strategy affected the expression of several mineralization‐related enzymes while increasing expression of the smooth muscle cell marker Acta2. We conclude that PHOSPHO1 plays a critical role in VSMC mineralization and that “phosphatase inhibition” may be a useful therapeutic strategy to reduce MVC.


Journal of Cellular and Molecular Medicine | 2015

BMP-9 regulates the osteoblastic differentiation and calcification of vascular smooth muscle cells through an ALK1 mediated pathway

Dongxing Zhu; Neil Mackenzie; Catherine M. Shanahan; Rukshana Shroff; Colin Farquharson; Vicky MacRae

The process of vascular calcification shares many similarities with that of physiological skeletal mineralization, and involves the deposition of hydroxyapatite crystals in arteries. However, the cellular mechanisms responsible have yet to be fully explained. Bone morphogenetic protein (BMP‐9) has been shown to exert direct effects on both bone development and vascular function. In the present study, we have investigated the role of BMP‐9 in vascular smooth muscle cell (VSMC) calcification. Vessel calcification in chronic kidney disease (CKD) begins pre‐dialysis, with factors specific to the dialysis milieu triggering accelerated calcification. Intriguingly, BMP‐9 was markedly elevated in serum from CKD children on dialysis. Furthermore, in vitro studies revealed that BMP‐9 treatment causes a significant increase in VSMC calcium content, alkaline phosphatase (ALP) activity and mRNA expression of osteogenic markers. BMP‐9‐induced calcium deposition was significantly reduced following treatment with the ALP inhibitor 2,5‐Dimethoxy‐N‐(quinolin‐3‐yl) benzenesulfonamide confirming the mediatory role of ALP in this process. The inhibition of ALK1 signalling using a soluble chimeric protein significantly reduced calcium deposition and ALP activity, confirming that BMP‐9 is a physiological ALK1 ligand. Signal transduction studies revealed that BMP‐9 induced Smad2, Smad3 and Smad1/5/8 phosphorylation. As these Smad proteins directly bind to Smad4 to activate target genes, siRNA studies were subsequently undertaken to examine the functional role of Smad4 in VSMC calcification. Smad4‐siRNA transfection induced a significant reduction in ALP activity and calcium deposition. These novel data demonstrate that BMP‐9 induces VSMC osteogenic differentiation and calcification via ALK1, Smad and ALP dependent mechanisms. This may identify new potential therapeutic strategies for clinical intervention.


Scientific Reports | 2016

Ablation of the androgen receptor from vascular smooth muscle cells demonstrates a role for testosterone in vascular calcification.

Dongxing Zhu; Patrick W. F. Hadoke; Junxi Wu; Alex T. Vesey; Daniel Alejandro Lerman; Marc R. Dweck; David E. Newby; Lee B. Smith; Vicky MacRae

Vascular calcification powerfully predicts mortality and morbidity from cardiovascular disease. Men have a greater risk of cardiovascular disease, compared to women of a similar age. These gender disparities suggest an influence of sex hormones. Testosterone is the primary and most well-recognised androgen in men. Therefore, we addressed the hypothesis that exogenous androgen treatment induces vascular calcification. Immunohistochemical analysis revealed expression of androgen receptor (AR) in the calcified media of human femoral artery tissue and calcified human valves. Furthermore, in vitro studies revealed increased phosphate (Pi)-induced mouse vascular smooth muscle cell (VSMC) calcification following either testosterone or dihydrotestosterone (DHT) treatment for 9 days. Testosterone and DHT treatment increased tissue non-specific alkaline phosphatase (Alpl) mRNA expression. Testosterone-induced calcification was blunted in VSMC-specific AR-ablated (SM-ARKO) VSMCs compared to WT. Consistent with these data, SM-ARKO VSMCs showed a reduction in Osterix mRNA expression. However, intriguingly, a counter-intuitive increase in Alpl was observed. These novel data demonstrate that androgens play a role in inducing vascular calcification through the AR. Androgen signalling may represent a novel potential therapeutic target for clinical intervention.


Vascular Pharmacology | 2016

A novel role for the mineralocorticoid receptor in glucocorticoid driven vascular calcification.

Dongxing Zhu; Nabil Rashdan; Karen E. Chapman; Patrick W. F. Hadoke; Vicky MacRae

Vascular calcification, which is common in the elderly and in patients with atherosclerosis, diabetes and chronic renal disease, increases the risk of cardiovascular morbidity and mortality. It is a complex, active and highly regulated cellular process that resembles physiological bone formation. It has previously been established that pharmacological doses of glucocorticoids facilitate arterial calcification. However, the consequences for vascular calcification of endogenous glucocorticoid elevation have yet to be established. Glucocorticoids (cortisol, corticosterone) are released from the adrenal gland, but can also be generated within cells from 11-keto metabolites of glucocorticoids (cortisone, 11-dehydrocorticosterone [11-DHC]) by the enzyme, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). In the current study we hypothesized that endogenous glucocorticoids facilitate vascular smooth muscle cell (VSMC) calcification and investigated the receptor-mediated mechanism underpinning this process. In vitro studies revealed increased phosphate-induced calcification in mouse VSMCs following treatment for 7 days with corticosterone (100 nM; 7.98 fold; P < 0.01), 11-DHC (100 nM; 7.14 fold; P < 0.05) and dexamethasone (10 nM; 7.16 fold; P < 0.05), a synthetic glucocorticoid used as a positive control. Inhibition of 11β-HSD isoenzymes by 10 μM carbenoxolone reduced the calcification induced by 11-DHC (0.37 fold compared to treatment with 11-DHC alone; P < 0.05). The glucocorticoid receptor (GR) antagonist mifepristone (10 μM) had no effect on VSMC calcification in response to corticosterone or 11-DHC. In contrast, the mineralocorticoid receptor (MR) antagonist eplerenone (10 μM) significantly decreased corticosterone- (0.81 fold compared to treatment with corticosterone alone; P < 0.01) and 11-DHC-driven (0.64 fold compared to treatment with 11-DHC alone; P < 0.01) VSMC calcification, suggesting this glucocorticoid effect is MR-driven and not GR-driven. Neither corticosterone nor 11-DHC altered the mRNA levels of the osteogenic markers PiT-1, Osx and Bmp2. However, DAPI staining of pyknotic nuclei and flow cytometry analysis of surface Annexin V expression showed that corticosterone induced apoptosis in VSMCs. This study suggests that in mouse VSMCs, corticosterone acts through the MR to induce pro-calcification effects, and identifies 11β-HSD-inhibition as a novel potential treatment for vascular calcification.


Journal of Molecular Endocrinology | 2014

Upregulation of IGF2 expression during vascular calcification.

Dongxing Zhu; Neil Mackenzie; Jose Luis Millan; Colin Farquharson; Vicky MacRae

The process of vascular calcification shares many similarities with that of skeletal mineralisation and involves the deposition of hydroxyapatite crystals in arteries and cardiac valves. However, the cellular mechanisms responsible have yet to be fully elucidated. In this study, we employed microarray analysis to demonstrate the upregulation of more than >9000 genes during the calcification of murine vascular smooth muscle cells (VSMCs), of which the most significantly, differentially expressed gene was Igf2. Following the validation of increased IGF2 expression by RT-qPCR and immunoblotting in calcifying murine VSMCs, IGF2 expression was further demonstrated in the calcified aorta of the Enpp1(-/-) mouse model of medial aortic calcification. Having confirmed that IGF1R and IGF2R were expressed in cultured murine VSMCs, cell-signalling studies in these cells revealed that IGF2 (50 ng/ml) significantly stimulated the phosphorylation of Akt and Erk1/2 (P<0.05). These results potentially indicate that IGF2 may mediate VSMC calcification via the stimulation of Erk1/2 and Akt signalling. This study suggests that the increased IGF2 expression in calcifying VSMCs may reflect the well-established prenatal role of IGF2, particularly as the osteogenic phenotypic transition of VSMCs in a calcified environment recapitulates many of the events occurring during embryonic development. A full understanding of the importance of IGF2 in this pathological process will lead to a better understanding of the aetiology of vascular calcification.

Collaboration


Dive into the Dongxing Zhu's collaboration.

Top Co-Authors

Avatar

Vicky MacRae

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Farquharson

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

Colin Farquharson

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge