Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donna B. Stolz is active.

Publication


Featured researches published by Donna B. Stolz.


Blood | 2012

Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes

Angela Montecalvo; Adriana T. Larregina; William J. Shufesky; Donna B. Stolz; Mara L. Sullivan; Jenny M. Karlsson; Catherine J. Baty; Gregory A. Gibson; Geza Erdos; Zhiliang Wang; Jadranka Milosevic; Olga Tkacheva; Sherrie J. Divito; Rick Jordan; James Lyons-Weiler; Simon C. Watkins; Adrian E. Morelli

Dendritic cells (DCs) are the most potent APCs. Whereas immature DCs down-regulate T-cell responses to induce/maintain immunologic tolerance, mature DCs promote immunity. To amplify their functions, DCs communicate with neighboring DCs through soluble mediators, cell-to-cell contact, and vesicle exchange. Transfer of nanovesicles (< 100 nm) derived from the endocytic pathway (termed exosomes) represents a novel mechanism of DC-to-DC communication. The facts that exosomes contain exosome-shuttle miRNAs and DC functions can be regulated by exogenous miRNAs, suggest that DC-to-DC interactions could be mediated through exosome-shuttle miRNAs, a hypothesis that remains to be tested. Importantly, the mechanism of transfer of exosome-shuttle miRNAs from the exosome lumen to the cytosol of target cells is unknown. Here, we demonstrate that DCs release exosomes with different miRNAs depending on the maturation of the DCs. By visualizing spontaneous transfer of exosomes between DCs, we demonstrate that exosomes fused with the target DCs, the latter followed by release of the exosome content into the DC cytosol. Importantly, exosome-shuttle miRNAs are functional, because they repress target mRNAs of acceptor DCs. Our findings unveil a mechanism of transfer of exosome-shuttle miRNAs between DCs and its role as a means of communication and posttranscriptional regulation between DCs.


Stem Cells | 2005

Stem cell characteristics of amniotic epithelial cells.

Toshio Miki; Thomas Lehmann; Hongbo Cai; Donna B. Stolz; Stephen C. Strom

Amniotic epithelial cells develop from the epiblast by 8 days after fertilization and before gastrulation, opening the possibility that they might maintain the plasticity of pregastrulation embryo cells. Here we show that amniotic epithelial cells isolated from human term placenta express surface markers normally present on embryonic stem and germ cells. In addition, amniotic epithelial cells express the pluripotent stem cell–specific transcription factors octamer‐binding protein 4 (Oct‐4) and nanog. Under certain culture conditions, amniotic epithelial cells form spheroid structures that retain stem cell characteristics. Amniotic epithelial cells do not require other cell‐derived feeder layers to maintain Oct‐4 expression, do not express telomerase, and are nontumorigenic upon transplantation. Based on immunohistochemical and genetic analysis, amniotic epithelial cells have the potential to differentiate to all three germ layers—endoderm (liver, pancreas), mesoderm (cardiomyocyte), and ectoderm (neural cells) in vitro. Amnion derived from term placenta after live birth may be a useful and noncontroversial source of stem cells for cell transplantation and regenerative medicine.


Nature Nanotechnology | 2010

Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation

Valerian E. Kagan; Nagarjun V. Konduru; Weihong Feng; Brett L. Allen; Jennifer Conroy; Yuri Volkov; Irina I. Vlasova; Natalia A. Belikova; Naveena Yanamala; Alexander A. Kapralov; Yulia Y. Tyurina; Jingwen Shi; Elena R. Kisin; Ashley R. Murray; Jonathan Franks; Donna B. Stolz; Pingping Gou; Judith Klein-Seetharaman; Bengt Fadeel; Alexander Star; Anna A. Shvedova

We have shown previously that single-walled carbon nanotubes can be catalytically biodegraded over several weeks by the plant-derived enzyme, horseradish peroxidase. However, whether peroxidase intermediates generated inside human cells or biofluids are involved in the biodegradation of carbon nanotubes has not been explored. Here, we show that hypochlorite and reactive radical intermediates of the human neutrophil enzyme myeloperoxidase catalyse the biodegradation of single-walled carbon nanotubes in vitro, in neutrophils and to a lesser degree in macrophages. Molecular modelling suggests that interactions of basic amino acids of the enzyme with the carboxyls on the carbon nanotubes position the nanotubes near the catalytic site. Importantly, the biodegraded nanotubes do not generate an inflammatory response when aspirated into the lungs of mice. Our findings suggest that the extent to which carbon nanotubes are biodegraded may be a major determinant of the scale and severity of the associated inflammatory responses in exposed individuals.


Journal of Experimental Medicine | 2007

HMGB1 release induced by liver ischemia involves Toll-like receptor 4–dependent reactive oxygen species production and calcium-mediated signaling

Allan Tsung; John R. Klune; Xianghong Zhang; Geetha Jeyabalan; Zongxian Cao; Ximei Peng; Donna B. Stolz; David A. Geller; Matthew R. Rosengart; Timothy R. Billiar

Ischemic tissues require mechanisms to alert the immune system of impending cell damage. The nuclear protein high-mobility group box 1 (HMGB1) can activate inflammatory pathways when released from ischemic cells. We elucidate the mechanism by which HMGB1, one of the key alarm molecules released during liver ischemia/reperfusion (I/R), is mobilized in response to hypoxia. HMGB1 release from cultured hepatocytes was found to be an active process regulated by reactive oxygen species (ROS). Optimal production of ROS and subsequent HMGB1 release by hypoxic hepatocytes required intact Toll-like receptor (TLR) 4 signaling. To elucidate the downstream signaling pathways involved in hypoxia-induced HMGB1 release from hepatocytes, we examined the role of calcium signaling in this process. HMGB1 release induced by oxidative stress was markedly reduced by inhibition of calcium/calmodulin-dependent kinases (CaMKs), a family of proteins involved in a wide range of calcium-linked signaling events. In addition, CaMK inhibition substantially decreased liver damage after I/R and resulted in accumulation of HMGB1 in the cytoplasm of hepatocytes. Collectively, these results demonstrate that hypoxia-induced HMGB1 release by hepatocytes is an active, regulated process that occurs through a mechanism promoted by TLR4-dependent ROS production and downstream CaMK-mediated signaling.


Journal of Biological Chemistry | 2007

Differential Effects of Endoplasmic Reticulum Stress-induced Autophagy on Cell Survival

Wen-Xing Ding; Hong-Min Ni; Wentao Gao; Yi Feng Hou; Melissa A. Melan; Xiaoyun Chen; Donna B. Stolz; Zhi Ming Shao; Xiao Ming Yin

Autophagy is a cellular response to adverse environment and stress, but its significance in cell survival is not always clear. Here we show that autophagy could be induced in the mammalian cells by chemicals, such as A23187, tunicamycin, thapsigargin, and brefeldin A, that cause endoplasmic reticulum stress. Endoplasmic reticulum stress-induced autophagy is important for clearing polyubiquitinated protein aggregates and for reducing cellular vacuolization in HCT116 colon cancer cells and DU145 prostate cancer cells, thus mitigating endoplasmic reticulum stress and protecting against cell death. In contrast, autophagy induced by the same chemicals does not confer protection in a normal human colon cell line and in the non-transformed murine embryonic fibroblasts but rather contributes to cell death. Thus the impact of autophagy on cell survival during endoplasmic reticulum stress is likely contingent on the status of cells, which could be explored for tumor-specific therapy.


Journal of Biological Chemistry | 2010

Nix Is Critical to Two Distinct Phases of Mitophagy, Reactive Oxygen Species-mediated Autophagy Induction and Parkin-Ubiquitin-p62-mediated Mitochondrial Priming

Wen-Xing Ding; Hong-Min Ni; Min Li; Yong Liao; Xiaoyun Chen; Donna B. Stolz; Gerald W. Dorn; Xiao Ming Yin

Damaged mitochondria can be eliminated by autophagy, i.e. mitophagy, which is important for cellular homeostasis and cell survival. Despite the fact that a number of factors have been found to be important for mitophagy in mammalian cells, their individual roles in the process had not been clearly defined. Parkin is a ubiquitin-protein isopeptide ligase able to translocate to the mitochondria that are to be removed. We showed here in a chemical hypoxia model of mitophagy induced by an uncoupler, carbonyl cyanide m-chlorophenylhydrazone (CCCP) that Parkin translocation resulted in mitochondrial ubiquitination and p62 recruitment to the mitochondria. Small inhibitory RNA-mediated knockdown of p62 significantly diminished mitochondrial recognition by the autophagy machinery and the subsequent elimination. Thus Parkin, ubiquitin, and p62 function in preparing mitochondria for mitophagy, here referred to as mitochondrial priming. However, these molecules were not required for the induction of autophagy machinery. Neither Parkin nor p62 seemed to affect autophagy induction by CCCP. Instead, we found that Nix was required for the autophagy induction. Nix promoted CCCP-induced mitochondrial depolarization and reactive oxygen species generation, which inhibited mTOR signaling and activated autophagy. Nix also contributed to mitochondrial priming by controlling the mitochondrial translocation of Parkin, although reactive oxygen species generation was not involved in this step. Deletion of the C-terminal membrane targeting sequence but not mutations in the BH3 domain disabled Nix for these functions. Our work thus distinguished the molecular events responsible for the different phases of mitophagy and placed Nix upstream of the events.


Journal of Biological Chemistry | 2006

FoxO1 Regulates Multiple Metabolic Pathways in the Liver EFFECTS ON GLUCONEOGENIC, GLYCOLYTIC, AND LIPOGENIC GENE EXPRESSION

Wenwei Zhang; Sandip Patil; Balwant Chauhan; Shaodong Guo; David R. Powell; Jamie Le; Angelos Klotsas; Ryan Matika; Xiangshan Xiao; Roberta Franks; Kim A. Heidenreich; Mini P. Sajan; Robert V. Farese; Donna B. Stolz; Patrick Tso; Seung Hoi Koo; Marc Montminy; Terry G. Unterman

FoxO transcription factors are important targets of insulin action. To better understand the role of FoxO proteins in the liver, we created transgenic mice expressing constitutively active FoxO1 in the liver using the α1-antitrypsin promoter. Fasting glucose levels are increased, and glucose tolerance is impaired in transgenic (TGN) versus wild type (WT) mice. Interestingly, fasting triglyceride and cholesterol levels are reduced despite hyperinsulinemia, and post-prandial changes in triglyceride levels are markedly suppressed in TGN versus WT mice. Activation of pro-lipogenic signaling pathways (atypical protein kinase C and protein kinase B) and the ability to suppress β-hydroxybutyrate levels are not impaired in TGN. In contrast, de novo lipogenesis measured with 3H2O is suppressed by ∼70% in the liver of TGN versus WT mice after refeeding. Gene-array studies reveal that the expression of genes involved in gluconeogenesis, glycerol transport, and amino acid catabolism is increased, whereas genes involved in glucose utilization by glycolysis, the pentose phosphate shunt, lipogenesis, and sterol synthesis pathways are suppressed in TGN versus WT. Studies with adenoviral vectors in isolated hepatocytes confirm that FoxO1 stimulates expression of gluconeogenic genes and suppresses expression of genes involved in glycolysis, the shunt pathway, and lipogenesis, including glucokinase and SREBP-1c. Together, these results indicate that FoxO proteins promote hepatic glucose production through multiple mechanisms and contribute to the regulation of other metabolic pathways important in the adaptation to fasting and feeding in the liver, including glycolysis, the pentose phosphate shunt, and lipogenic and sterol synthetic pathways.


Molecular and Cellular Biology | 2002

CYR61 (CCN1) Is Essential for Placental Development and Vascular Integrity

Fan E. Mo; Andrew G. Muntean; Chih Chiun Chen; Donna B. Stolz; Simon C. Watkins; Lester F. Lau

ABSTRACT CYR61 (CCN1) is a member of the CCN family of secreted matricellular proteins that includes connective tissue growth factor (CCN2), NOV (CCN3), WISP-1 (CCN4), WISP-2 (CCN5), and WISP-3 (CCN6). First identified as the product of a growth factor-inducible immediate-early gene, CYR61 is an extracellular matrix-associated angiogenic inducer that functions as a ligand of integrin receptors to promote cell adhesion, migration, and proliferation. Aberrant expression of Cyr61 is associated with breast cancer, wound healing, and vascular diseases such as atherosclerosis and restenosis. To understand the functions of CYR61 during development, we have disrupted the Cyr61 gene in mice. We show here that Cyr61-null mice suffer embryonic death: ∼30% succumbed to a failure in chorioallantoic fusion, and the reminder perished due to placental vascular insufficiency and compromised vessel integrity. These findings establish CYR61 as a novel and essential regulator of vascular development. CYR61 deficiency results in a specific defect in vessel bifurcation (nonsprouting angiogenesis) at the chorioallantoic junction, leading to an undervascularization of the placenta without affecting differentiation of the labyrinthine syncytiotrophoblasts. This unique phenotype is correlated with impaired Vegf-C expression in the allantoic mesoderm, suggesting that CYR61-regulated expression of Vegf-C plays a role in vessel bifurcation. The genetic and molecular basis of vessel bifurcation is presently unknown, and these findings provide new insight into this aspect of angiogenesis.


Gene Therapy | 2004

Hydroporation as the mechanism of hydrodynamic delivery.

G Zhang; X Gao; Young K. Song; Regis R. Vollmer; Donna B. Stolz; Joshua Z. Gasiorowski; David A. Dean; Dexi Liu

We have reported that a rapid tail vein injection of a large volume of plasmid DNA solution into a mouse results in high level of transgene expression in the liver. Gene transfer efficiency of this hydrodynamics-based procedure is determined by the combined effect of a large volume and high injection speed. Here, we show that the hydrodynamic injection induces a transient irregularity of heart function, a sharp increase in venous pressure, an enlargement of liver fenestrae, and enhancement of membrane permeability of the hepatocytes. At the cellular level, our results suggest that hepatic delivery by the hydrodynamic injection is accomplished by the generation of membrane pores in the hepatocytes.


PLOS ONE | 2008

Egr-1 Regulates Autophagy in Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease

Zhihua Chen; Hong Pyo Kim; Frank C. Sciurba; Seon-Jin Lee; Carol A. Feghali-Bostwick; Donna B. Stolz; Rajiv Dhir; Rodney J. Landreneau; Mathew J. Schuchert; Samuel A. Yousem; Kiichi Nakahira; Joseph M. Pilewski; Janet S. Lee; Yingze Zhang; Stefan W. Ryter; Augustine M. K. Choi

Background Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by abnormal cellular responses to cigarette smoke, resulting in tissue destruction and airflow limitation. Autophagy is a degradative process involving lysosomal turnover of cellular components, though its role in human diseases remains unclear. Methodology and Principal Findings Increased autophagy was observed in lung tissue from COPD patients, as indicated by electron microscopic analysis, as well as by increased activation of autophagic proteins (microtubule-associated protein-1 light chain-3B, LC3B, Atg4, Atg5/12, Atg7). Cigarette smoke extract (CSE) is an established model for studying the effects of cigarette smoke exposure in vitro. In human pulmonary epithelial cells, exposure to CSE or histone deacetylase (HDAC) inhibitor rapidly induced autophagy. CSE decreased HDAC activity, resulting in increased binding of early growth response-1 (Egr-1) and E2F factors to the autophagy gene LC3B promoter, and increased LC3B expression. Knockdown of E2F-4 or Egr-1 inhibited CSE-induced LC3B expression. Knockdown of Egr-1 also inhibited the expression of Atg4B, a critical factor for LC3B conversion. Inhibition of autophagy by LC3B-knockdown protected epithelial cells from CSE-induced apoptosis. Egr-1 −/− mice, which displayed basal airspace enlargement, resisted cigarette-smoke induced autophagy, apoptosis, and emphysema. Conclusions We demonstrate a critical role for Egr-1 in promoting autophagy and apoptosis in response to cigarette smoke exposure in vitro and in vivo. The induction of autophagy at early stages of COPD progression suggests novel therapeutic targets for the treatment of cigarette smoke induced lung injury.

Collaboration


Dive into the Donna B. Stolz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noriko Murase

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda G. Griffith

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Ross

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Alan Wells

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge