Donna E. Fernandez
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Donna E. Fernandez.
Plant Physiology | 2005
Thomas D. Sharkey; Sansun Yeh; Amy E. Wiberley; Tanya G. Falbel; Deming Gong; Donna E. Fernandez
Isoprene synthase converts dimethylallyl diphosphate, derived from the methylerythritol 4-phosphate (MEP) pathway, to isoprene. Isoprene is made by some plants in substantial amounts, which affects atmospheric chemistry, while other plants make no isoprene. As part of our long-term study of isoprene synthesis, the genetics of the isoprene biosynthetic pathway of the isoprene emitter, kudzu (Pueraria montana), was compared with similar genes in Arabidopsis (Arabidopsis thaliana), which does not make isoprene. The MEP pathway genes in kudzu were similar to the corresponding Arabidopsis genes. Isoprene synthase genes of kudzu and aspen (Populus tremuloides) were cloned to compare their divergence with the divergence seen in MEP pathway genes. Phylogenetic analysis of the terpene synthase gene family indicated that isoprene synthases are either within the monoterpene synthase clade or sister to it. In Arabidopsis, the gene most similar to isoprene synthase is a myrcene/ocimene (acyclic monoterpenes) synthase. Two phenylalanine residues found exclusively in isoprene synthases make the active site smaller than other terpene synthase enzymes, possibly conferring specificity for the five-carbon substrate rather than precursors of the larger isoprenoids. Expression of the kudzu isoprene synthase gene in Arabidopsis caused Arabidopsis to emit isoprene, indicating that whether or not a plant emits isoprene depends on whether or not it has a terpene synthase capable of using dimethylallyl diphosphate.
The Plant Cell | 2000
Donna E. Fernandez; Sharyn E. Perry; Sara E. Patterson; Anthony B. Bleecker; Su-Chiung Fang
AGL15 (AGAMOUS-like 15), a member of the MADS domain family of regulatory factors, accumulates preferentially throughout the early stages of the plant life cycle. In this study, we investigated the expression pattern and possible roles of postembryonic accumulation of AGL15. Using a combination of reporter genes, RNA gel blot analysis, and immunochemistry, we found that the AGL15 protein accumulates transiently in the shoot apex in young Arabidopsis and Brassica seedlings and that promoter activity is associated with the shoot apex and the base of leaf petioles throughout the vegetative phase. During the reproductive phase, AGL15 accumulates transiently in floral buds. When AGL15 was expressed in Arabidopsis under the control of a strong constitutive promoter, we noted a striking increase in the longevity of the sepals and petals as well as delays in a selected set of age-dependent developmental processes, including the transition to flowering and fruit maturation. Although ethylene has been implicated in many of these same processes, the effects of AGL15 could be clearly distinguished from the effects of the ethylene resistant1-1 mutation, which confers dominant insensitivity to ethylene. By comparing the petal breakstrength (the force needed to remove petals) for flowers of different ages, we determined that ectopic AGL15 had a novel effect: the breakstrength of petals initially declined, as occurs in the wild type, but was then maintained at an intermediate value over a prolonged period. Abscission-associated gene expression and structural changes were also altered in the presence of ectopic AGL15.
The Plant Cell | 1995
Sharyn E. Perry; Karl W. Nichols; Donna E. Fernandez
To extend our knowledge of genes expressed during early embryogenesis, the differential display technique was used to identify and isolate mRNA sequences that accumulate preferentially in young Brassica napus embryos. One of these genes encodes a new member of the MADS domain family of regulatory proteins; it has been designated AGL15 (for AGAMOUS-like). AGL15 shows a novel pattern of expression that is distinct from those of previously characterized family members. RNA gel blot analyses and in situ hybridization techniques were used to demonstrate that AGL15 mRNA accumulated primarily in the embryo and was present in all embryonic tissues, beginning at least as early as late globular stage in B. napus. Genomic and cDNA clones corresponding to two AGL15 genes from B. napus and the homologous single-copy gene from Arabidopsis, which is located on chromosome 5, were isolated and analyzed. Antibodies prepared against overexpressed Brassica AGL15 lacking the conserved MADS domain were used to probe immunoblots, and AGL15-related proteins were found in embryos of a variety of angiosperms, including plants as distantly related as maize. Based on these data, we suggest that AGL15 is likely to be an important component of the regulatory circuitry directing seed-specific processes in the developing embryo.
Plant Physiology | 2003
Ellen W. Harding; Weining Tang; Karl W. Nichols; Donna E. Fernandez; Sharyn E. Perry
The MADS domain protein AGL15 (AGAMOUS-Like 15) has been found to preferentially accumulate in angiosperm tissues derived from double fertilization (i.e. the embryo, suspensor, and endosperm) and in apomictic, somatic, and microspore embryos. Localization to the nuclei supports a role in gene regulation during this phase of the life cycle. To test whether AGL15 is involved in the promotion and maintenance of embryo identity, the embryogenic potential of transgenic plants that constitutively express AGL15 was assessed. Expression of AGL15 was found to enhance production of secondary embryos from cultured zygotic embryos, and constitutive expression led to long-term maintenance of development in this mode. Ectopic accumulation of AGL15 also promoted somatic embryo formation after germination from the shoot apical meristem of seedlings in culture. These results indicate that AGL15 is involved in support of development in an embryonic mode.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Melissa S. Pischke; Linda G. Jones; Denichiro Otsuga; Donna E. Fernandez; Gary N. Drews; Michael R. Sussman
Cytokinin-Independent 1 (CKI1) belongs to a group of putative plant histidine kinases whose members do not appear to act as ethylene receptors. The deduced protein structure, combined with the observation that Arabidopsis callus cultures overexpressing CKI1 exhibit a “cytokinin-independent” cell division and greening phenotype, led to the hypothesis that CKI1 is involved in cytokinin signaling, perhaps acting as a cytokinin receptor. To test the function of CKI1, we used a reverse-genetic approach to identify plants carrying T-DNA insertions in CKI1. Two independent alleles were identified, which produce the same developmental phenotype. Analyses of populations segregating for the cki1–5 or cki1–6 T-DNA insertion alleles failed to reveal any homozygous cki1 plants, indicating that the homozygous mutant condition was lethal. Based on segregation distortion, transmission studies, a microscopy-based examination of developing female gametophytes, and mRNA expression data, we suggest that CKI1 function is required for megagametophyte development. Our work with CKI1 mutants indicates that signal transduction by means of a His/Asp phosphorelay system may play an important and previously unsuspected role in female gametophyte development in Arabidopsis.
The Plant Cell | 1996
Sharyn E. Perry; Karl W. Nichols; Donna E. Fernandez
Little is known about regulatory factors that act during the earliest stages of plant embryogenesis. The MADS domain protein AGL15 (for AGAMOUS-like) is expressed preferentially during embryogenesis and accumulates during early seed development in monocotyledonous and dicotyledonous flowering plants. AGL15-specific antibodies and immunohistochemistry were used to demonstrate that AGL15 accumulates before fertilization in the cytoplasm in the cells of the egg apparatus and moves into the nucleus during early stages of development in the suspensor, embryo, and endosperms. Relatively high levels of AGL15 are present in the nuclei during embryo morphogenesis and until the seeds start to dry in Brassica, maize, and Arabidopsis. AGL15 is associated with the chromosomes during mitosis, and gel mobility shift assays were used to demonstrate that AGL15 binds DNA in a sequence-specific manner. To assess whether AGL15 is likely to play a role in specifying the seed or embryonic phase of development, AGL15 accumulation was examined in Arabidopsis mutants that prematurely exit embryogenesis. lec1-2 mutants show an embryo-specific loss of AGL15 at the transition stage, suggesting that AGL15 interacts with regulators in the leafy cotyledons pathway.
Plant Physiology | 2009
Benjamin J. Adamczyk; Donna E. Fernandez
MADS box genes encode transcription factors that play important regulatory roles at various stages in plant development. Transcripts encoding the MIKC*-type (for MADS DNA-binding domain, Intervening domain, Keratin-like domain, and C-terminal domain) factors, a divergent clade, are enriched in mature pollen. Previous studies have shown that these proteins bind DNA as heterodimers, which form between S- and P-class MIKC* proteins. In this study, Arabidopsis (Arabidopsis thaliana) pollen with little or no MIKC* activity was produced by combining strong loss-of-function alleles of the S-class proteins AGAMOUS-LIKE66 (AGL66) and AGL104. Double mutant plants produce pollen but have severely reduced fertility due to reduced pollen viability, delayed germination, and aberrant pollen tube growth. Microarray analysis of the mutant pollen revealed that the loss of MIKC* regulation has a major impact on pollen gene expression. Pollen competition assays involving various combinations of AGL65, AGL66, AGL104, and AGL94 mutant alleles provided genetic evidence that at least three heterodimers (AGL30-AGL104, AGL65-AGL104, and AGL30-AGL66) form and function in at least a partially redundant fashion in pollen. Analyses of transcript abundance in wild-type and mutant pollen indicated that AGL65-containing complexes are likely to be more abundant than the others and that accumulation of AGL30 and AGL94 transcripts increases in response to reductions in MIKC* activity. These results were combined to create a model to describe MIKC* heterodimer contributions in pollen.
Plant Physiology | 2002
Su-Chiung Fang; Donna E. Fernandez
We have examined the effect of regulated overexpression of AGL15, a member of the MADS domain family of regulatory factors, on reproductive tissues. Using molecular and physiological markers, we show that constitutive overexpression of AGL15 in Arabidopsis leads to delay and down-regulation of senescence programs in perianth organs and developing fruits and alters the process of seed desiccation. Through genetic crosses, we show that the rate of water loss in the maturing seeds is dictated by the genetic composition and physiological state of the maternal tissue, rather than the embryo. To define the developmental time and/or place when senescence programs are most affected by elevated AGL15 levels, we expressed AGL15 under the control of various promoters. Expression during senescence or in abscission zone cells did not produce delays in floral organ senescence or abscission. Using a glucocorticoid-inducible expression system, we show that an increase in AGL15 levels around the time of flower opening is necessary to delay senescence and increase floral organ longevity.
Plant Molecular Biology | 2005
Melissa D. Lehti-Shiu; Benjamin J. Adamczyk; Donna E. Fernandez
MADS domain factors play important roles as developmental regulators in plants. In Arabidopsis thaliana, MADS domain proteins have been shown to regulate various processes during the vegetative and reproductive phases. Relatively little is known, however, about family members expressed during the embryonic phase and their function. To determine which MADS-box genes are expressed during the embryonic phase in Arabidopsis, a family-wide survey involving gene-specific primers and RT-PCR was conducted. Transcripts corresponding to 64 (out of 109 total) family members could be detected in RNA samples isolated from embryonic culture tissue. Eight MADS-box genes that appear to be expressed at higher levels during the embryonic phase than in seedlings or in inflorescence apices were identified. The spatial pattern of expression in developing seeds was characterized for four MADS-box genes (FLOWERING LOCUS C, FLOWERING LOCUS M, AGAMOUS-LIKE 15, and AGAMOUS-LIKE 18) using reporter constructs encoding translational fusions to GUS. All four are expressed in cells throughout the endosperm and embryo. Finally, to test the hypothesis that AGAMOUS-LIKE15 (AGL15) and AGAMOUS-LIKE18 (AGL18) play essential roles during the embryonic phase, plants carrying T-DNA insertions that disrupt these genes were isolated. No embryo defects were observed in agl15 or agl18 single mutants or in agl15agl18 double mutants. These results indicate that multiple regulatory pathways that involve MADS domain factors are likely to operate in embryonic tissues, and that genetic and/or functional redundancy are likely to be as prevalent as in other phases of the life cycle.
Plant Physiology | 2011
Courtney A. Skalitzky; Jonathan R. Martin; Jessica H. Harwood; John J. Beirne; Benjamin J. Adamczyk; Kenneth Cline; Donna E. Fernandez
Proteins that are synthesized on cytoplasmic ribosomes but function within plastids must be imported and then targeted to one of six plastid locations. Although multiple systems that target proteins to the thylakoid membranes or thylakoid lumen have been identified, a system that can direct the integration of inner envelope membrane proteins from the stroma has not been previously described. Genetics and localization studies were used to show that plastids contain two different Sec systems with distinct functions. Loss-of-function mutations in components of the previously described thylakoid-localized Sec system, designated as SCY1 (At2g18710), SECA1 (At4g01800), and SECE1 (At4g14870) in Arabidopsis (Arabidopsis thaliana), result in albino seedlings and sucrose-dependent heterotrophic growth. Loss-of-function mutations in components of the second Sec system, designated as SCY2 (At2g31530) and SECA2 (At1g21650) in Arabidopsis, result in arrest at the globular stage and embryo lethality. Promoter-swap experiments provided evidence that SCY1 and SCY2 are functionally nonredundant and perform different roles in the cell. Finally, chloroplast import and fractionation assays and immunogold localization of SCY2-green fluorescent protein fusion proteins in root tissues indicated that SCY2 is part of an envelope-localized Sec system. Our data suggest that SCY2 and SECA2 function in Sec-mediated integration and translocation processes at the inner envelope membrane.