Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donna H. Korzick is active.

Publication


Featured researches published by Donna H. Korzick.


Medicine and Science in Sports and Exercise | 2001

Vascular smooth muscle : integrator of vasoactive signals during exercise hyperemia

M. Harold Laughlin; Donna H. Korzick

The primary focus of this review is to discuss the importance of vascular smooth muscle function in mechanisms underlying exercise hyperemia in skeletal muscle. Important features of exercise hyperemia are presented and include: 1) the large magnitude of increase in blood flow, 2) the pattern of increased blood flow within and among skeletal muscle during exercise, 3) exercise hyperemia results from increases in vascular conductance produced by relaxation of vascular smooth muscle, 4) the increased blood flow is linked to the oxidative metabolism of the muscle, and 5) the increased blood flow occurs very rapidly with the initiation of exercise. A prevailing theme throughout this review is that vascular smooth muscle is a primary integrator of vasoactive signals that, in turn, regulate vascular resistance and muscle blood flow. Signal transduction pathways involved in vascular smooth muscle contraction and relaxation are discussed, with particular emphasis on the role of multiple and redundant signaling pathways for initiating a given contractile/relaxation response. We emphasize the concept that exercise hyperemia is a local phenomenon and that, during maximal exercise when most signals for vasoconstriction are still present, three primary control mechanisms are thought to regulate vasodilation and subsequent increases in vascular conductance: myogenic vascular control, metabolic vascular control, and endothelium-mediated vascular control. Experimental paradigms to test the relative importance of the predominant mechanisms thought to underlie exercise hyperemia are discussed and evaluated in light of the multiple and redundant control systems now known to contribute to control of blood flow in striated muscle tissue.


Endocrinology | 2009

Rapid Estrogen Receptor-α Activation Improves Ischemic Tolerance in Aged Female Rats through a Novel Protein Kinase Cε-Dependent Mechanism

Jennifer Novotny; Amy Simpson; Nanette J. Tomicek; Timothy S. Lancaster; Donna H. Korzick

The effects of estrogen deficiency on the loss of cardioprotection with advancing age are complex and poorly understood. A major focus of the current study was to uncover a cardioprotective role for rapid, nongenomic estrogen receptor (ER) signaling in the aged female myocardium. We hypothesized that selective ERalpha activation in aged females would reduce infarct size in part, through reversal of age-associated reductions in mitochondrial protein kinase Cepsilon (PKCepsilon). Hearts isolated from adult (6 month old) and aged (23-24 months old) female F344 rats with ovaries removed (n = 20 per group) were subjected to ischemia/reperfusion (47 min global ischemia). Rats were injected sc with the ERalpha agonist propylpyrazole triol (PPT) or vehicle 45 min before heart isolation (5 microg/kg). Infarct size was greatest in aged vs. adult ovariectomized rats, significantly reduced by PPT, and the protection reversed by prior administration of the ER inhibitor ICI 182,780 (3 mg/kg). Increased ERalpha particulate targeting occurred after PPT in conjunction with reversal of age-related reductions in nuclear PKCepsilon, mitochondrial PKCepsilon and pAkt (P < 0.05). PPT also increased mRNA levels for the PKCepsilon anchoring protein, receptor for activated C kinase2 (RACK2; P < 0.05). Our data suggest, for the first time, that selective ERalpha activation reduces ischemic injury in the aged, estrogen-deficient heart through a mechanism involving nongenomic redistribution of ERalpha and PKCepsilon activation. A novel feed-forward transcriptional mechanism to potentially enhance PKCepsilon-RACK2 interactions was also observed. Collectively, our findings may provide key insight into developing targeted therapeutic interventions in postmenopausal women to reduce ischemia/reperfusion injury, including selective ERalpha mimetics.


Mechanisms of Ageing and Development | 2005

Age- and sex-dependent alterations in protein kinase C (PKC) and extracellular regulated kinase 1/2 (ERK1/2) in rat myocardium.

J. Craig Hunter; Donna H. Korzick

Cardiovascular morbidity and mortality increase significantly with advancing age, with proportionally higher rates occurring in aged women when compared to aged men. The signaling alterations responsible for age-related reductions in ischemic stress reserves, particularly in aged women, are poorly understood. Accordingly, we sought to determine whether alterations in the cellular location and formation of specific protein kinase C (PKC)-extracellular regulated 1/2 (ERK1/2) signaling modules (SMS) might provide insight into known age- and sex-related differences in cardiovascular disease outcomes. Cytosolic (Cyto), mitochondrial (Mito) and nuclear (Nuc) fractions were isolated from left ventricles of male (M) and female (F) adult (6 mo), castrated or aged (23 mo) F344 rats by centrifugation. Western blotting was used to assess PKC (alpha, delta, epsilon), p-ERK1/2 and p-Bad(Ser112) levels, and immunoprecipitation to assess PKC-ERK1/2 SMS. Cyto-PKCalpha levels increased with age (p<0.0001), whereas increases in cyto-PKCalpha-ERK1/2 SMS were only observed in aged F (60%; p<0.01). Mito-PKCdelta and Mito-PKCdelta-ERK1/2 SMS increased in M and F with age (p<0.0001); however increases in Cyto-PKCdelta were only observed in aged M (80% p<0.0001). It is important to note that Nuc- and Mito-PKCdelta-ERK1/2 SMS were 3.5- and 4.8-fold greater in males versus females, respectively (p<0001). Increases in Mito-PKCepsilon-ERK1/2 SMS (216%) were also specific to aged M (p<0.0001), however, Mito-p-Bad(Ser112) levels were decreased with age in both M and F. Differences in sex hormone status could not fully account for observed age-related differences in PKC. Collectively, our results provide novel evidence for age and sex-related differences in the magnitude and distribution of cardiac PKC-ERK1/2 SMS consistent with previously described pathological and protective phenotypes, respectively.


Medicine and Science in Sports and Exercise | 1998

Endurance exercise alters the contractile responsiveness of rat heart to extracellular Na+ and Ca2+.

Edward B. Lankford; Donna H. Korzick; Bradley M. Palmer; Brian L. Stauffer; Joseph Y. Cheung; Russell L. Moore

PURPOSE AND METHODS The isovolumic contractile responsiveness of left ventricular (LV) myocardium to altered extracellular [Ca2+], [Na+], and pacing frequency was examined using perfused hearts (37 degrees C) isolated from sedentary (SED) and treadmill-trained (TR) adult female rats. RESULTS The suppressive effect of reducing perfusate free [Ca2+] to 0.7 mM on LV developed pressure (delta LVP) was greater in the TR hearts compared with SED hearts (P < 0.05). When perfusate [Na+] was reduced to 120 mM ([Ca2+] = 0.7 mM), delta LVP augmentation was greatest in the TR hearts (P < 0.05). The negative force-frequency relationship observed at physiologic [Ca2+] and [Na+] was progressively altered toward a positive force-frequency relationship with each subsequent change in perfusate [Ca2+] and [Na+] although the effect was greatest in TR hearts (P < 0.05). CONCLUSIONS Training elicited a small but significant (P < 0.05) prolongation in the pressure development phase of contraction. Under the physiological [Ca2+], [Na+] perfusion condition, training produced an increase in the magnitude of extrasystolic potentiation of LV pressure, whereas the time constant of mechanical restitution was unaffected. Training affected neither the Ca(2+)-dependence nor the maximal capacity of [3H] ryanodine binding to LV myocardial homogenates. The simplest interpretation of [Na+] and [Ca2+] reduction experiments is that myocardial Ca2+ efflux was augmented by exercise training.


Journal of Biological Chemistry | 2005

PKCδ Mediates Testosterone-induced Increases in Coronary Smooth Muscle Cav1.2

Kamala K. Maddali; Donna H. Korzick; Darla L. Tharp; Douglas K. Bowles

Sex hormones have emerged as important modulators of cardiovascular physiology and pathophysiology. Our previous studies demonstrated that testosterone increases expression and activity of L-type, voltage-gated calcium channels (Cav1.2) in coronary arteries of males. The purpose of the present study was to determine whether testosterone (T) alters coronary protein kinase C δ (PKCδ) expression and whether PKCδ plays a role in coronary Cav1.2 expression. For in vitro studies, porcine right coronary arteries (RCA) and post-confluent (passages 3-6) 5-day, serum-restricted coronary smooth muscle cell cultures (CSMC) were incubated in the presence and absence of T or dihydrotestosterone (10 and 100 nm) for 18 h at 37 °C in a humidified chamber. For sex and endogenous testosterone-dependent effects, RCA were obtained from intact males, castrated males, castrated males with T replacement, and intact females. In vitro T and dihydrotestosterone caused an ∼2-3-fold increase in PKCδ protein levels, ∼1.5-2-fold increase in PKCδ kinase activity, and localization of PKCδ toward the plasma membrane and nuclear envelope. PKCδ protein levels were higher in coronary arteries of intact males compared with intact females. Elimination of endogenous testosterone by castration reduced RCA PKCδ protein levels, an effect partially (∼45%) reversed by exogenous T (castrated males with T replacement). In CSMC, PKC inhibition with either the general PKC inhibitor, cheylerythrine, or the putative PKCδ inhibitor, rottlerin, completely inhibited the T-mediated increase in coronary Cav1.2 protein levels. Conversely, Go6976, a conventional PKC isoform inhibitor, failed to inhibit T-induced increases in coronary Cav1.2 protein levels. PKCδ short interference RNA completely blocked T-induced increases in Cav1.2 protein levels in CSMC. These results demonstrate for the first time that 1) endogenous T is a primary modulator of coronary PKCδ protein and activity in males and 2) T increases Cav1.2 protein expression in a PKCδ-dependent manner.


Physiological Genomics | 2012

Quantitative proteomic analysis reveals novel mitochondrial targets of estrogen deficiency in the aged female rat heart.

Timothy S. Lancaster; Sarah J Jefferson; J. Craig Hunter; Veronica Lopez; J.E. Van Eyk; Edward G. Lakatta; Donna H. Korzick

The incidence of myocardial infarction rises sharply at menopause, implicating a potential role for estrogen (E(2)) loss in age-related increases in ischemic injury. We aimed to identify quantitative changes to the cardiac mitochondrial proteome of aging females, based on the hypothesis that E(2) deficiency exacerbates age-dependent disruptions in mitochondrial proteins. Mitochondria isolated from left ventricles of adult (6 mo) and aged (24 mo) F344 ovary-intact or ovariectomized (OVX) rats were labeled with 8plex isobaric tags for relative and absolute quantification (iTRAQ; n = 5-6/group). Groups studied were adult, adult OVX, aged, and aged OVX. In vivo coronary artery ligation and in vitro mitochondrial respiration studies were also performed in a subset of rats. We identified 965 proteins across groups and significant directional changes in 67 proteins of aged and/or aged OVX; 32 proteins were unique to aged OVX. Notably, only six proteins were similarly altered in adult OVX (voltage-dependent ion channel 1, adenine nucleotide translocator 1, cytochrome c oxidase subunits VIIc and VIc, catalase, and myosin binding protein C). Proteins affected by aging were primarily related to cellular metabolism, oxidative stress, and cell death. The largest change occurred in monoamine oxidase-A (MAO-A), a source of oxidative stress. While acute MAO-A inhibition induced mild uncoupling in aged mitochondria, reductions in infarct size were not observed. Age-dependent alterations in mitochondrial signaling indicate a highly selective myocardial response to E(2) deficiency. The combined proteomic and functional approaches described here offer possibility of new protein targets for experimentation and therapeutic intervention in the aged female population.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Local delivery of a PKCε-activating peptide limits ischemia reperfusion injury in the aged female rat heart

Timothy Lancaster; Sarah J Jefferson; Donna H. Korzick

Reduced efficacy of cardioprotective interventions in the aged female heart, including estrogen replacement, highlights the need for alternative therapeutics to reduce myocardial ischemia-reperfusion (I/R) injury in postmenopausal women. Here, we sought to determine the efficacy of protein kinase-Cε (PKCε)-mediated cardioprotection in the aged, estradiol-deficient rat heart. Infarct size and functional recovery were assessed in Langendorff-perfused hearts from adult (5 mo) or aged (23 mo) female Fisher 344 ovary-intact or ovariectomized (OVX) rats administered a PKCε-activator, receptor for activated C kinase (ψεRACK) prior to 47-min ischemia and 60-min reperfusion. Proteomic analysis was conducted on left ventricular mitochondrial fractions treated with ψεRACK prior to I/R, utilizing isobaric tags for relative and absolute quantitation (iTRAQ) 8plex labeling and tandem mass spectrometry. Real-time PCR was utilized to assess connexin 43 (Cx43) and RACK2 mRNA post-I/R. Greater infarct size in aged OVX (78%) vs. adult (37%) was reduced by ψεRACK (35%, P < 0.0001) and associated with greater mitochondrial PKCε localization (P < 0.0003). Proteomic analysis revealed three novel mitochondrial targets of PKCε-mediated cardioprotection with aging (P < 0.05): the antioxidant enzymes glutathione peroxidase (GPX) and MnSOD2, and heat shock protein 10. Finally, decreased levels of Cx43 and RACK2 mRNA seen with age were partially abrogated by administration of ψεRACK (P < 0.05). The mechanisms described here may represent important therapeutic candidates for the treatment of acute myocardial infarction in postmenopausal women and age-associated estradiol deficiency.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2014

Chronic alcohol consumption disrupts myocardial protein balance and function in aged, but not adult, female F344 rats.

Charles H. Lang; Donna H. Korzick

The purpose of this study was to assess whether the deleterious effect of chronic alcohol consumption differs in adult and aged female rats. To address this aim, adult (4 mo) and aged (18 mo) F344 rats were fed a nutritionally complete liquid diet containing alcohol (36% total calories) or an isocaloric isonitrogenous control diet for 20 wk. Cardiac structure and function, assessed by echocardiography, as well as myocardial protein synthesis and proteolysis did not differ in either alcohol- versus control-fed adult rats or in adult versus aged control-fed rats. In contrast, cardiac function was impaired in alcohol-fed aged rats compared with age-matched control rats. Additionally, alcohol feeding decreased cardiac protein synthesis that was associated with decreased phosphorylation of 4E-BP1 and S6K1. This reduction in mammalian target of rapamycin (mTOR) kinase activity was associated with reduced eIF3f and binding of both Raptor and eIF4G to eIF3. Proteasome activity was increased in alcohol-fed aged rats with a coordinate elevation in the E3 ligases atrogin-1 and muscle RING-finger protein-1 (MuRF1). These changes were associated with increased regulated in development and DNA damage response 1 (REDD1) and phosphorylation of AMP-activated protein kinase (AMPK) but no increase in AKT or forkhead transcription factor (FOXO)3 phosphorylation. Finally, markers of autophagy (e.g., LC3B, Atg7, Atg12) and TNF-α were increased to a greater extent in alcohol-fed aged rats. These data demonstrate that aged female rats exhibit an enhanced sensitivity to alcohol compared with adult animals. Our data are consistent with a model whereby alcohol increases proteolysis via FOXO-independent increase in atrogin-1, which degrades eIF3f and therefore impairs formation of a functional preinitiation complex and protein synthesis.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

Aging accentuates alcohol-induced decrease in protein synthesis in gastrocnemius

Donna H. Korzick; Daniel R. Sharda; Anne M. Pruznak; Charles H. Lang

The present study sought to determine whether the protein catabolic response in skeletal muscle produced by chronic alcohol feeding was exaggerated in aged rats. Adult (3 mo) and aged (18 mo) female F344 rats were fed a nutritionally complete liquid diet containing alcohol (36% of total calories) or an isocaloric isonitrogenous control diet for 20 wk. Muscle (gastrocnemius) protein synthesis, as well as mTOR and proteasome activity did not differ between control-fed adult and aged rats, despite the increased TNF-α and IL-6 mRNA and decreased IGF-I mRNA in muscle of aged rats. Compared with alcohol-fed adult rats, aged rats demonstrated an exaggerated alcohol-induced reduction in lean body mass and protein synthesis (both sarcoplasmic and myofibrillar) in gastrocnemius. Alcohol-fed aged rats had enhanced dephosphorylation of 4E-BP1, as well as enhanced binding of raptor with both mTOR and Deptor, and a decreased binding of raptor with 4E-BP1. Alcohol feeding of both adult and aged rats reduced RagA binding to raptor. The LKB1-AMPK-REDD1 pathway was upregulated in gastrocnemius from alcohol-fed aged rats. These exaggerated alcohol-induced effects in aged rats were associated with a greater decrease in muscle but not circulating IGF-I, but no further increase in inflammatory mediators. In contrast, alcohol did not exaggerate the age-induced increase in atrogin-1 and MuRF1 mRNA or the increased proteasome activity. Our results demonstrate that, compared with adult rats, the gastrocnemius from aged rats is more sensitive to the catabolic effects of alcohol on protein synthesis, but not protein degradation, and this exaggerated response may be AMPK-dependent.


Microcirculation | 2013

Divergent Effects of Aging and Sex on Vasoconstriction to Endothelin in Coronary Arterioles

Amanda J. LeBlanc; Bei Chen; Patrick Dougherty; Rafael A. Reyes; Robert D. Shipley; Donna H. Korzick; Judy M. Muller-Delp

The risk for cardiovascular disease increases with advancing age; however, the chronological development of heart disease differs in males and females. The purpose of this study was to determine whether age‐induced alterations in responses of coronary arterioles to the endogenous vasoconstrictor, endothelin, are sex‐specific.

Collaboration


Dive into the Donna H. Korzick's collaboration.

Top Co-Authors

Avatar

J. Craig Hunter

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Jennifer Novotny

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Amy Simpson

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

John C. Kostyak

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra M. Garvin

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

James Craig Hunter

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Nanette J. Tomicek

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Timothy S. Lancaster

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Charles H. Lang

Penn State Milton S. Hershey Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge