Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donna L. Sutherland is active.

Publication


Featured researches published by Donna L. Sutherland.


Water Research | 2014

Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds

Donna L. Sutherland; Matthew H. Turnbull; Rupert J. Craggs

Depth has been widely recognised as a crucial operational feature of a high rate algal pond (HRAP) as it modifies the amount of light and frequency at which microalgal cells are exposed to optimal light. To date, there has been little focus on the optimisation of microalgal performance in wastewater treatment HRAPs with respect to depth, with advice ranging from as shallow as possible to 100 cm deep. This paper investigates the seasonal performance of microalgae in wastewater treatment HRAPs operated at three different depths (200, 300 and 400 mm). Microalgal performance was measured in terms of biomass production and areal productivity, nutrient removal efficiency and photosynthetic performance. The overall areal productivity significantly increased with increasing depth. Areal productivity ranged from 134 to 200% higher in the 400 mm deep HRAP compared to the 200 mm deep HRAP. Microalgae in the 400 mm deep HRAP were more efficient at NH4-N uptake and were photosynthetically more efficient compared to microalgae in the 200 mm deep HRAP. A higher chlorophyll-a concentration in the 200 mm deep HRAP resulted in a decrease in photosynthetic performance, due to insufficient carbon supply, over the course of the day in summer (as indicated by lower α, Pmax and oxygen production) compared to the 300 and 400 mm deep HRAPs. Based on these results, improved areal productivity and more wastewater can be treated per land area in the 400 mm deep HRAPs compared to 200 mm deep HRAPs without compromising wastewater treatment quality, while lowering capital and operational costs.


New Zealand Journal of Botany | 2014

High rate algal pond systems for low-energy wastewater treatment, nutrient recovery and energy production

Rupert J. Craggs; J.B.K. Park; Stephan Heubeck; Donna L. Sutherland

High rate algal pond (HRAP) systems provide opportunities for low-energy wastewater treatment and energy recovery from wastewater solids, as well as biofuel production from the harvested algal biomass. The wastewater is pretreated using covered anaerobic ponds or gravity settlers and covered digester ponds which remove and digest the wastewater solids. The effluent is then treated in shallow gently mixed HRAP which efficiently breakdown the dissolved organic matter. The algae assimilate wastewater nutrients to provide both secondary and partial tertiary-level treatment. HRAP also provide more efficient natural disinfection. HRAP performance can be further enhanced by bubbling CO2 into the pond during the day to promote algal growth when it is often carbon-limited. This paper discusses the design and operation and performance of HRAP systems and their application for economical, low-energy upgrade of conventional wastewater treatment ponds combined with energy recovery and biofuel production.


Water Research | 2015

The effects of CO2 addition along a pH gradient on wastewater microalgal photo-physiology, biomass production and nutrient removal

Donna L. Sutherland; Clive Howard-Williams; Matthew H. Turnbull; Paul A. Broady; Rupert J. Craggs

Carbon limitation in domestic wastewater high rate algal ponds is thought to constrain microalgal photo-physiology and productivity, particularly in summer. This paper investigates the effects of CO₂ addition along a pH gradient on the performance of wastewater microalgae in high rate algal mesocosms. Performance was measured in terms of light absorption, electron transport rate, photosynthetic efficiency, biomass production and nutrient removal efficiency. Light absorption by the microalgae increased by up to 128% with increasing CO₂ supply, while a reduction in the package effect meant that there was less internal self-shading thereby increasing the efficiency of light absorption. CO₂ augmentation increased the maximum rate of both electron transport and photosynthesis by up to 256%. This led to increased biomass, with the highest yield occurring at the highest dissolved inorganic carbon/lowest pH combination tested (pH 6.5), with a doubling of chlorophyll-a (Chl-a) biomass while total microalgal biovolume increased by 660% in Micractinium bornhemiense and by 260% in Pediastrum boryanum dominated cultures. Increased microalgal biomass did not off-set the reduction in ammonia volatilisation in the control and overall nutrient removal was lower with CO₂ than without. Microalgal nutrient removal efficiency decreased as pH decreased and may have been related to decreased Chl-a per cell. This experiment demonstrated that CO₂ augmentation increased microalgal biomass in two distinct communities, however, care must be taken when interpreting results from standard biomass measurements with respect to CO₂ augmentation.


Bioresource Technology | 2015

Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production

Donna L. Sutherland; Clive Howard-Williams; Matthew H. Turnbull; Paul A. Broady; Rupert J. Craggs

With microalgal biofuels currently receiving much attention, there has been renewed interest in the combined use of high rate algal ponds (HRAP) for wastewater treatment and biofuel production. This combined use of HRAPs is considered to be an economically feasible option for biofuel production, however, increased microalgal productivity and nutrient removal together with reduced capital costs are needed before it can be commercially viable. Despite HRAPs being an established technology, microalgal photosynthesis and productivity is still limited in these ponds and is well below the theoretical maximum. This paper critically evaluates the parameters that limit microalgal light absorption and photosynthesis in wastewater HRAPs and examines biological, chemical and physical options for improving light absorption and utilisation, with the view of enhancing biomass production and nutrient removal.


Antarctic Science | 2001

Benthic primary production in two perennially ice-covered Antarctic lakes: patterns of biomass accumulation with a model of community metabolism

Ian Hawes; Daryl L. Moorhead; Donna L. Sutherland; J. Schmeling; A.-M. Schwarz

A mathematical model was used to simulate interannual patterns of biomass accumulation within benthic microbial mats of two Antarctic lakes. Lakes Hoare and Vanda are in the Dry Valley region of Southern Victoria Land, and are both perennially ice covered. The model combines experimentally derived observations of light/photosynthesis relationships and rates of respiration of mats from a range of depths in these lakes, with data on incident radiation and the optical properties of the ice and water column. The model was used to estimate daily and annual production and, using measured carbon content, the potential vertical accumulation of the mats over a year. An annual pattern of photosynthesis was predicted for both lakes, with net production from October to February and net respiration at other times. Predicted rates and patterns of net photosynthesis were remarkably similar in the two lakes, despite differences in light climate: the ice of Lake Hoare transmits 1–4% incident radiation, whereas that of Lake Vanda transmits up to 20%. Maximum daily rates of 15–20 μg carbon cm−2 were predicted to occur at approximately 10 m depth in both lakes. Maximum annual rates of carbon fixation (at 10–12 m depth) in both lakes were c. 1.2 mg carbon cm−2 equating to approximately 0.1–4 mm vertical accumulation of mat each year. Experimental studies of microbial mats in the lakes revealed horizontal laminations of similar thickness to model estimates, supporting the hypothesis that these were annual layers. Differences between model estimates and observations were found in deeper water in Lake Vanda, where considerably more material accumulated than was predicted.


Applied and Environmental Microbiology | 2003

Influences of Pond Geochemistry, Temperature, and Freeze-Thaw on Terminal Anaerobic Processes Occurring in Sediments of Six Ponds of the McMurdo Ice Shelf, near Bratina Island, Antarctica

Douglas O. Mountfort; Heinrich F. Kaspar; Rodney A. Asher; Donna L. Sutherland

ABSTRACT The effects of freeze-thaw, freezing and sediment geochemistry on terminal anaerobic processes occurring in sediments taken from below cyanobacterial mats in meltwater ponds of the McMurdo Ice Shelf in Antarctica were investigated. Depending on the geochemical and physical status of the sediments (i.e., frozen or thawed), as well as passage of sediment through a freeze-thaw cycle, terminal carbon and electron flow shifted in which the proportions of hydrogen and acetate utilized for methanogenesis and sulfate reduction changed. Thus, in low-sulfate (or chloride) sediment which was thawed and incubated at 4°C, total carbon and electron flow were mediated by acetate-driven sulfate reduction and H2-driven methanogenesis. When the same sediments were incubated frozen, both methanogenesis and sulfate reduction decreased. However, under these conditions methanogenesis was favored over sulfate reduction, and carbon flow from acetate to methane increased relative to sulfate reduction; >70% of methane was contributed by acetate, and more than 80% of acetate was oxidized by pathways not coupled to sulfate reduction. In high-sulfate pond sediments, sulfate reduction was a major process mediating terminal carbon and electron flow in both unfrozen and frozen incubations. However, as with low-sulfate sediments, acetate oxidation became uncoupled from sulfate reduction with freezing. Geochemical and temperature effects could be expressed by linear models in which the log (methanogenesis to sulfate reduction) was negative log linear with respect to either temperature or the log of the sulfate (or chloride) concentration. From these relationships it was possible to predict the ratio for a given temperature (low-sulfate sediments) or sulfate (chloride) concentration. Small transitory changes, such as elevated sulfate reduction coupled to increased acetate turnover, resulted from application of a freeze-thaw cycle to low-salinity pond sediments. The results demonstrate how ecophysiological processes may change in anaerobic systems under extreme conditions (e.g., freezing) and provide new insights into microbial events occurring under these conditions.


Journal of Applied Phycology | 2015

Economic construction and operation of hectare-scale wastewater treatment enhanced pond systems

Rupert J. Craggs; J.B.K. Park; Donna L. Sutherland; Stephan Heubeck

Enhanced pond systems (EPS) are an effective and economic upgrade option for conventional wastewater treatment ponds providing improved natural disinfection and nutrient removal. Moreover, wastewater nutrients are recovered as harvested algal biomass for beneficial use as fertiliser, feed or biofuel feedstock. Low-cost construction and operation are crucial factors for the adoption of EPS. This paper presents novel and economic design, construction and operation methods for an earthen hectare-scale EPS treating domestic wastewater at the Cambridge Wastewater Treatment Plant, New Zealand. The system consisted of: the existing Anaerobic Pond to settle and anaerobically digest wastewater solids that was retrofitted with a cover to capture the biogas, two 1-hectare HRAPs to aerobically treat and remove nutrients from the anaerobic pond effluent through the production of algal biomass, algal harvest ponds to settle and concentrate the algal biomass which was then pumped into a covered digester pond to recover energy as biogas and nutrients as a concentrated digestate. Further effluent polishing was provided by maturation ponds and rock filters to achieve higher quality effluent. All of the ponds were of earthen construction and were made within existing or disused conventional wastewater treatment ponds. Cost-effective earthen pond construction combined with the use of protective geotextile and geomembrane liners, geomembrane covers, painted steel paddlewheels and precast concrete carbonation sumps enable economic implementation of EPS for energy-efficient and effective wastewater treatment as well as nutrient recovery and energy production for the local community.


FEMS Microbiology Ecology | 2009

Annual growth layers as proxies of past growth conditions for benthic microbial mats in a perennially ice-covered Antarctic lake

Donna L. Sutherland; Ian Hawes

Perennial microbial mats can be the dominant autotrophic community in Antarctic lakes. Their seasonal growth results in clearly discernible annual growth layering. We examined features of live microbial mats from a range of depths in Lake Hoare, Antarctica, that are likely to be preserved in these layers to determine their potential as proxies of past growth performance. Cyanobacteria dominated the mat for all but the deepest depth sampled. Changes in areal concentrations of phycobilin pigments, organic matter and extracellular polysaccharide and in species composition did not correspond to changes in various water column properties, but showed a linear relationship with irradiance. Carbonate accumulation in the mats correlated with biomass markers and may be inferred as an index of mat performance. We examined the carbonate content of annual layers laid down from 1958-1959 to 1994-1995 in sediment cores from 12 m depth. The carbonate content in the layer showed a significant correlation with the mean summer air temperature. These data suggest a link between air temperature and microbial mat growth performance, and suggest that it is mediated via irradiance. Laminated microbial mats in Antarctic lakes have the potential to act as fine-resolution records of environmental conditions in the recent past, although interpretation is complex.


Water Research | 2014

Wastewater microalgal production, nutrient removal and physiological adaptation in response to changes in mixing frequency

Donna L. Sutherland; Matthew H. Turnbull; Paul A. Broady; Rupert J. Craggs

Laminar flows are a common problem in high rate algal ponds (HRAP) due to their long channels and gentle mixing by a single paddlewheel. Sustained laminar flows may modify the amount of light microalgal cells are exposed to, increase the boundary layer between the cell and the environment and increase settling out of cells onto the pond bottom. To date, there has been little focus on the effects of the time between mixing events (frequency of mixing) on the performance of microalgae in wastewater treatment HRAPs. This paper investigates the performance of three morphologically distinct microalgae in wastewater treatment high rate algal mesocosms operated at four different mixing frequencies (continuous, mixed every 45 min, mixed every 90 min and no mixing). Microalgal performance was measured in terms of biomass concentration, nutrient removal efficiency, light utilisation and photosynthetic performance. Microalgal biomass increased significantly with increasing mixing frequency for the two colonial species but did not differ for the single celled species. All three species were more efficient at NH4-N uptake as the frequency of mixing increased. Increased frequency of mixing supported larger colonies with improved harvest-ability by gravity but at the expense of efficient light absorption and maximum rate of photosynthesis. However, maximum quantum yield was highest in the continuously mixed cultures due to higher efficiency of photosynthesis under light limited conditions. Based on these results, higher microalgal productivity, improved wastewater treatment and better gravity based harvest-ability can be achieved with the inclusion of more mixing points and reduced laminar flows in full-scale HRAP.


Water Research | 2015

Modifying the high rate algal pond light environment and its effects on light absorption and photosynthesis

Donna L. Sutherland; Valerio Montemezzani; Clive Howard-Williams; Matthew H. Turnbull; Paul A. Broady; Rupert J. Craggs

The combined use of high rate algal ponds (HRAPs) for wastewater treatment and commercial algal production is considered to be an economically viable option. However, microalgal photosynthesis and biomass productivity is constrained in HRAPs due to light limitation. This paper investigates how the light climate in the HRAP can be modified through changes in pond depth, hydraulic retention time (HRT) and light/dark turnover rate and how this impacts light absorption and utilisation by the microalgae. Wastewater treatment HRAPs were operated at three different pond depth and HRT during autumn. Light absorption by the microalgae was most affected by HRT, significantly decreasing with increasing HRT, due to increased internal self-shading. Photosynthetic performance (as defined by Pmax, Ek and α), significantly increased with increasing pond depth and decreasing HRT. Despite this, increasing pond depth and/or HRT, resulted in decreased pond light climate and overall integrated water column net oxygen production. However, increased light/dark turnover was able to compensate for this decrease, bringing the net oxygen production in line with shallower ponds operated at shorter HRT. On overcast days, modelled daily net photosynthesis significantly increased with increased light/dark turnover, however, on clear days such increased turnover did not enhance photosynthesis. This study has showed that light absorption and photosynthetic performance of wastewater microalgae can be modified through changes to pond depth, HRT and light/dark turnover.

Collaboration


Dive into the Donna L. Sutherland's collaboration.

Top Co-Authors

Avatar

Rupert J. Craggs

National Institute of Water and Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul A. Broady

University of Canterbury

View shared research outputs
Top Co-Authors

Avatar

Clive Howard-Williams

National Institute of Water and Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Ian Hawes

National Institute of Water and Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Bob Spigel

National Institute of Water and Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

J.B.K. Park

National Institute of Water and Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Stephan Heubeck

National Institute of Water and Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ned Norton

National Institute of Water and Atmospheric Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge