Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donna M. D'Agostino is active.

Publication


Featured researches published by Donna M. D'Agostino.


Blood | 2011

Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150.

Margherita Ghisi; Alberto Corradin; Katia Basso; Chiara Frasson; Valentina Serafin; Subhamoy Mukherjee; Lara Mussolin; Katia Ruggero; Laura Bonanno; Alessandro Guffanti; Gianluca De Bellis; Gino Gerosa; Giovanni Stellin; Donna M. D'Agostino; Giuseppe Basso; Vincenzo Bronte; Stefano Indraccolo; Alberto Amadori; Paola Zanovello

Ontogenesis of T cells in the thymus is a complex process whose molecular control is poorly understood. The present study investigated microRNAs involved in human thymocyte differentiation by comparing the microRNA expression profiles of thymocytes at the double-positive, single-positive CD4(+) and single-positive CD8(+) maturation stages. Microarray analysis showed that each thymocyte population displays a distinct microRNA expression profile that reflects their developmental relationships. Moreover, analysis of small-RNA libraries generated from human unsorted and double-positive thymocytes and from mature peripheral CD4(+) and CD8(+) T lymphocytes, together with the microarray data, indicated a trend toward up-regulation of microRNA expression during T-cell maturation after the double-positive stage and revealed a group of microRNAs regulated during normal T-cell development, including miR-150, which is strongly up-regulated as maturation progresses. We showed that miR-150 targets NOTCH3, a member of the Notch receptor family that plays important roles both in T-cell differentiation and leukemogenesis. Forced expression of miR-150 reduces NOTCH3 levels in T-cell lines and has adverse effects on their proliferation and survival. Overall, these findings suggest that control of the Notch pathway through miR-150 may have an important impact on T-cell development and physiology.


Oncogene | 1999

Mitochondrial targeting of the p13II protein coded by the x-II ORF of human T-cell leukemia/lymphotropic virus type I (HTLV-I).

Vincenzo Ciminale; Lorenza Zotti; Donna M. D'Agostino; Tiziana Ferro; Luca Casareto; Genoveffa Franchini; Paolo Bernardi; Luigi Chieco-Bianchi

The X region of the HTLV-I genome contains four major open reading frames (ORFs), two of which, termed x-I and x-II, are of still undefined biological significance. By indirect immunofluorescence and dual labeling with marker proteins, we demonstrate that p13II, an 87-amino acid protein coded by the x-II ORF, is selectively targeted to mitochondria. Mutational analysis revealed that mitochondrial targeting of p13II is directed by an atypical 10-amino acid signal sequence that is not cleaved upon import and is able to target the Green Fluorescent Protein to mitochondria. Expression of p13II results in specific alterations of mitochondrial morphology and distribution from a typical string-like, dispersed network to round-shaped clusters, suggesting that p13II might interfere with processes relying on an intact mitochondrial architecture. Functional studies of mitochondria with the cationic fluorochrome tetramethylrhodamine revealed that a subpopulation of the cells with p13II-positive mitochondria show a disruption in the mitochondrial inner membrane potential (Δψ), an early event observed in cells committed to apoptosis. Taken together, these results suggest novel virus-cell interactions that might be important in HTLV-I replication and/or pathogenicity.


Blood | 2011

Kinetics and intracellular compartmentalization of HTLV-1 gene expression: Nuclear retention of HBZ mRNAs

Francesca Rende; Ilaria Cavallari; Alberto Corradin; Micol Silic-Benussi; Gianna Toffolo; Yuetsu Tanaka; Steven Jacobson; Graham P. Taylor; Donna M. D'Agostino; Charles R. M. Bangham; Vincenzo Ciminale

Human T-cell leukemia virus type 1 (HTLV-1) codes for 9 alternatively spliced transcripts and 2 major regulatory proteins named Tax and Rex that function at the transcriptional and posttranscriptional levels, respectively. We investigated the temporal sequence of HTLV-1 gene expression in primary cells from infected patients using splice site-specific quantitative RT-PCR. The results indicated a two-phase kinetics with the tax/rex mRNA preceding expression of other viral transcripts. Analysis of mRNA compartmentalization in cells transfected with HTLV-1 molecular clones demonstrated the strict Rex-dependency of the two-phase kinetics and revealed strong nuclear retention of HBZ mRNAs, supporting their function as noncoding transcripts. Mathematical modeling underscored the importance of a delay between the functions of Tax and Rex, which was supported by experimental evidence of the longer half-life of Rex. These data provide evidence for a temporal pattern of HTLV-1 expression and reveal major differences in the intracellular compartmentalization of HTLV-1 transcripts.


Advances in Cancer Research | 2005

Mitochondria as functional targets of proteins coded by human tumor viruses

Donna M. D'Agostino; Paolo Bernardi; Luigi Chieco-Bianchi; Vincenzo Ciminale

Molecular analyses of tumor virus-host cell interactions have provided key insights into the genes and pathways involved in neoplastic transformation. Recent studies have revealed that the human tumor viruses Epstein-Barr virus (EBV), Kaposis sarcoma-associated herpesvirus (KSHV), human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), and human T-cell leukemia virus type 1 (HTLV-1) express proteins that are targeted to mitochondria. The list of these viral proteins includes BCL-2 homologues (BHRF1 of EBV; KSBCL-2 of KSHV), an inhibitor of apoptosis (IAP) resembling Survivin (KSHV K7), proteins that alter mitochondrial ion permeability and/or membrane potential (HBV HBx, HPV E[wedge]14, HCV p7, and HTLV-1 p13(II)), and K15 of KSHV, a protein with undefined function. Consistent with the central role of mitochondria in energy production, cell death, calcium homeostasis, and redox balance, experimental evidence indicates that these proteins have profound effects on host cell physiology. In particular, the viral BCL-2 homologues BHRF1 and KSBCL-2 inhibit apoptosis triggered by a variety of stimuli. HBx, p7, E1[wedge]4, and p13(II) exert powerful effects on mitochondria either directly due to their channel-forming activity or indirectly through interactions with endogenous channels. Further investigation of these proteins and their interactions with mitochondria will provide important insights into the mechanisms of viral replication and tumorigenesis and could aid in the discovery of new targets for anti-tumor therapy.


FEBS Letters | 2000

Unique features of HIV-1 Rev protein phosphorylation by protein kinase CK2 (‘casein kinase-2’)

Oriano Marin; Stefania Sarno; Marco Boschetti; Mario A. Pagano; Flavio Meggio; Vincenzo Ciminale; Donna M. D'Agostino; Lorenzo A. Pinna

The HIV‐1 Rev transactivator is phosphorylated in vitro by protein kinase CK2 at two residues, Ser‐5 and Ser‐8; these sites are also phosphorylated in vivo. Here we show that the mechanism by which CK2 phosphorylates Rev is unique in several respects, notably: (i) it is fully dependent on the regulatory, β‐subunit of CK2; (ii) it relies on the integrity of an acidic stretch of CK2β which down‐regulates the phosphorylation of other substrates; (iii) it is inhibited in a dose‐dependent manner by polyamines and other polycationic effectors that normally stimulate CK2 activity. In contrast, a peptide corresponding to the amino‐terminal 26 amino acids of Rev, including the phosphoacceptor site, is readily phosphorylated by the catalytic subunit of CK2 even in the absence of the β‐subunit. These data, in conjunction with the observation that two functionally inactive derivatives of Rev with mutations in its helix‐loop‐helix motif are refractory to phosphorylation, indicate the phosphorylation of Rev by CK2 relies on conformational features of distinct regions that are also required for the transactivators biological activity.


Biochimica et Biophysica Acta | 2009

Modulation of mitochondrial K+ permeability and reactive oxygen species production by the p13 protein of human T-cell leukemia virus type 1

Micol Silic-Benussi; Enrica Cannizzaro; Andrea Venerando; Ilaria Cavallari; Valeria Petronilli; Nicoletta La Rocca; Oriano Marin; Luigi Chieco-Bianchi; Fabio Di Lisa; Donna M. D'Agostino; Paolo Bernardi; Vincenzo Ciminale

Human T-cell leukemia virus type-1 (HTLV-1) expresses an 87-amino acid protein named p13 that is targeted to the inner mitochondrial membrane. Previous studies showed that a synthetic peptide spanning an alpha helical domain of p13 alters mitochondrial membrane permeability to cations, resulting in swelling. The present study examined the effects of full-length p13 on isolated, energized mitochondria. Results demonstrated that p13 triggers an inward K(+) current that leads to mitochondrial swelling and confers a crescent-like morphology distinct from that caused by opening of the permeability transition pore. p13 also induces depolarization, with a matching increase in respiratory chain activity, and augments production of reactive oxygen species (ROS). These effects require an intact alpha helical domain and strictly depend on the presence of K(+) in the assay medium. The effects of p13 on ROS are mimicked by the K(+) ionophore valinomycin, while the protonophore FCCP decreases ROS, indicating that depolarization induced by K(+) vs. H(+) currents has different effects on mitochondrial ROS production, possibly because of their opposite effects on matrix pH (alkalinization and acidification, respectively). The downstream consequences of p13-induced mitochondrial K(+) permeability are likely to have an important influence on the redox state and turnover of HTLV-1-infected cells.


Cell Death & Differentiation | 2005

The human T-cell leukemia virus type 1 p13II protein: effects on mitochondrial function and cell growth

Donna M. D'Agostino; Micol Silic-Benussi; Hajime Hiraragi; Michael D. Lairmore; Vincenzo Ciminale

p13II of human T-cell leukemia virus type 1 (HTLV-1) is an 87-amino-acid protein that is targeted to the inner mitochondrial membrane. p13II alters mitochondrial membrane permeability, producing a rapid, membrane potential-dependent influx of K+. These changes result in increased mitochondrial matrix volume and fragmentation and may lead to depolarization and alterations in mitochondrial Ca2+ uptake/retention capacity. At the cellular level, p13II has been found to interfere with cell proliferation and transformation and to promote apoptosis induced by ceramide and Fas ligand. Assays carried out in T cells (the major targets of HTLV-1 infection in vivo) demonstrate that p13II-mediated sensitization to Fas ligand-induced apoptosis can be blocked by an inhibitor of Ras farnesylation, thus implicating Ras signaling as a downstream target of p13II function.


Molecular Aspects of Medicine | 2010

HTLV-1 p13, a small protein with a busy agenda

Micol Silic-Benussi; Roberta Biasiotto; Vibeke Andresen; Genoveffa Franchini; Donna M. D'Agostino; Vincenzo Ciminale

Human T-cell leukemia virus type 1 (HTLV-1) infection is characterized by life-long persistence of the virus in the host. While most infected individuals remain asymptomatic, 3-5% will eventually develop adult T-cell leukemia/lymphoma (ATLL) or tropical spastic paraparesis/HTLV-associated myelopathy (TSP/HAM) after a clinical latency that can span years (TSP/HAM) to decades (ATLL). The major oncogenic determinant among HTLV-1 proteins is the Tax transactivator, which influences the expression and function of a great number of cellular proteins, drives cell proliferation, reduces cell death, and induces genetic instability. The present review is focused on the current knowledge of p13, an HTLV-1 accessory protein targeted to the inner mitochondrial membrane and, under certain conditions, to the nucleus. In mitochondria, p13 produces an inward K+current that results in an increased production of ROS by mitochondria. These effects are linked to the proteins effects on cell turnover which include activation of primary T-cells and reduced proliferation/sensitization to death of tumor cells. Recent findings suggest that in the presence of Tax, p13 is subjected to ubiquitylation and partly targeted to the nucleus. Nuclear p13 binds Tax and inhibits its transcriptional activity. These findings suggest that the protein might exert distinct functions depending on its intracellular localization and influence both the turnover of infected cells and the balance between viral latency and productive infection.


Journal of Virology | 2003

Functional Domain Structure of Human T-Cell Leukemia Virus Type 2 Rex

Murli Narayan; Ihab Younis; Donna M. D'Agostino; Patrick L. Green

ABSTRACT The Rex protein of human T-cell leukemia virus (HTLV) acts posttranscriptionally to induce the cytoplasmic expression of the unspliced and incompletely spliced viral RNAs encoding the viral structural and enzymatic proteins and is therefore essential for efficient viral replication. Rex function requires nuclear import, RNA binding, multimerization, and nuclear export. In addition, it has been demonstrated that the phosphorylation status of HTLV-2 Rex (Rex-2) correlates with RNA binding and inhibition of splicing in vitro. Recent mutational analyses of Rex-2 revealed that the phosphorylation of serine residues 151 and 153 within a novel carboxy-terminal domain is critical for function in vivo. To further define the functional domain structure of Rex-2, we evaluated a panel of Rex-2 mutants for subcellular localization, RNA binding capacity, multimerization and trans-dominant properties, and the ability to shuttle between the nucleus and the cytoplasm. Rex-2 mutant S151A,S153A, which is defective in phosphorylation and function, showed diffuse cytoplasmic staining, whereas mutant S151D,S153D, previously shown to be functional and in a conformation corresponding to constitutive phosphorylation, displayed increased intense speckled staining in the nucleoli. In vivo RNA binding analyses indicated that mutant S151A,S153A failed to efficiently bind target RNA, while its phosphomimetic counterpart, S151D,S153D, bound twofold more RNA than wild-type Rex-2. Taken together, these findings provide direct evidence that the phosphorylation status of Rex-2 is linked to cellular trafficking and RNA binding capacity. Mutants with substitutions in either of the two putative multimerization domains or in the putative activation domain-nuclear export signal displayed a dominant negative phenotype as well as defects in multimerization and nucleocytoplasmic shuttling. Several carboxy-terminal mutants that displayed wild-type levels of phosphorylation and localized to the nucleolus were also partially impaired in shuttling. This is consistent with the hypothesis that the carboxy terminus of Rex-2 contains a novel domain that is required for efficient shuttling. This work thus provides a more detailed functional domain map of Rex-2 and further insight into its regulation of HTLV replication.


Journal of Virology | 2014

Small noncoding RNAs in cells transformed by human T-cell leukemia virus type 1: a role for a tRNA fragment as a primer for reverse transcriptase

Katia Ruggero; Alessandro Guffanti; Alberto Corradin; Varun Kumar Sharma; Gianluca De Bellis; Giorgio Corti; Angela Grassi; Paola Zanovello; Vincenzo Bronte; Vincenzo Ciminale; Donna M. D'Agostino

ABSTRACT The present study employed mass sequencing of small RNA libraries to identify the repertoire of small noncoding RNAs expressed in normal CD4+ T cells compared to cells transformed with human T-cell leukemia virus type 1 (HTLV-1), the causative agent of adult T-cell leukemia/lymphoma (ATLL). The results revealed distinct patterns of microRNA expression in HTLV-1-infected CD4+ T-cell lines with respect to their normal counterparts. In addition, a search for virus-encoded microRNAs yielded 2 sequences that originated from the plus strand of the HTLV-1 genome. Several sequences derived from tRNAs were expressed at substantial levels in both uninfected and infected cells. One of the most abundant tRNA fragments (tRF-3019) was derived from the 3′ end of tRNA-proline. tRF-3019 exhibited perfect sequence complementarity to the primer binding site of HTLV-1. The results of an in vitro reverse transcriptase assay verified that tRF-3019 was capable of priming HTLV-1 reverse transcriptase. Both tRNA-proline and tRF-3019 were detected in virus particles isolated from HTLV-1-infected cells. These findings suggest that tRF-3019 may play an important role in priming HTLV-1 reverse transcription and could thus represent a novel target to control HTLV-1 infection. IMPORTANCE Small noncoding RNAs, a growing family of regulatory RNAs that includes microRNAs and tRNA fragments, have recently emerged as key players in many biological processes, including viral infection and cancer. In the present study, we employed mass sequencing to identify the repertoire of small noncoding RNAs in normal T cells compared to T cells transformed with human T-cell leukemia virus type 1 (HTLV-1), a retrovirus that causes adult T-cell leukemia/lymphoma. The results revealed a distinct pattern of microRNA expression in HTLV-1-infected cells and a tRNA fragment (tRF-3019) that was packaged into virions and capable of priming HTLV-1 reverse transcription, a key event in the retroviral life cycle. These findings indicate tRF-3019 could represent a novel target for therapies aimed at controlling HTLV-1 infection.

Collaboration


Dive into the Donna M. D'Agostino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Genoveffa Franchini

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge