Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donna M. Lehman is active.

Publication


Featured researches published by Donna M. Lehman.


Diabetes | 2007

Haplotypes of Transcription Factor 7–Like 2 (TCF7L2) Gene and Its Upstream Region Are Associated With Type 2 Diabetes and Age of Onset in Mexican Americans

Donna M. Lehman; Kelly J. Hunt; Robin J. Leach; Jeanette Hamlington; Rector Arya; Hanna E. Abboud; Ravindranath Duggirala; John Blangero; Harald H H Göring; Michael P. Stern

TCF7L2 acts as both a repressor and transactivator of genes, as directed by the Wnt signaling pathway. Recently, several highly correlated sequence variants located within a haplotype block of the TCF7L2 gene were observed to associate with type 2 diabetes in three Caucasian cohorts. We previously reported linkage of type 2 diabetes in the San Antonio Family Diabetes Study (SAFADS) cohort consisting of extended pedigrees of Mexican Americans to the region of chromosome 10q harboring TCF7L2. We therefore genotyped 11 single nucleotide polymorphisms (SNPs) from nine haplotype blocks across the gene in 545 SAFADS subjects (178 diabetic) to investigate their role in diabetes pathogenesis. We observed nominal association between four SNPs (rs10885390, rs7903146, rs12255372, and rs3814573) in three haplotype blocks and type 2 diabetes, age at diagnosis, and 2-h glucose levels (P = 0.001–0.055). Furthermore, we identified a common protective haplotype defined by these four SNPs that was significantly associated with type 2 diabetes and age at diagnosis (P = 4.2 × 10−5, relative risk [RR] 0.69; P = 6.7 × 10−6, respectively) and a haplotype that confers diabetes risk that contains the rare alleles at SNPs rs10885390 and rs12255372 (P = 0.02, RR 1.64). These data provide evidence that variation in the TCF7L2 genomic region may affect risk for type 2 diabetes in Mexican Americans, but the attributable risk may be lower than in Caucasian populations.


JAMA | 2014

Association of a Low-Frequency Variant in HNF1A With Type 2 Diabetes in a Latino Population

Karol Estrada; Ingvild Aukrust; Lise Bjørkhaug; Noël P. Burtt; Josep M. Mercader; Humberto García-Ortiz; Alicia Huerta-Chagoya; Hortensia Moreno-Macías; Geoffrey A. Walford; Jason Flannick; Amy Williams; María J. Gómez-Vázquez; Juan Carlos Fernández-López; Angélica Martínez-Hernández; Silvia Jiménez-Morales; Federico Centeno-Cruz; Elvia Mendoza-Caamal; Cristina Revilla-Monsalve; Sergio Islas-Andrade; Emilio J. Córdova; Xavier Soberón; María Elena González-Villalpando; E. Henderson; Lynne R. Wilkens; Loic Le Marchand; Olimpia Arellano-Campos; María Luisa Ordóñez-Sánchez; Maribel Rodríguez-Torres; Rosario Rodríguez-Guillén; Laura Riba

IMPORTANCE Latino populations have one of the highest prevalences of type 2 diabetes worldwide. OBJECTIVES To investigate the association between rare protein-coding genetic variants and prevalence of type 2 diabetes in a large Latino population and to explore potential molecular and physiological mechanisms for the observed relationships. DESIGN, SETTING, AND PARTICIPANTS Whole-exome sequencing was performed on DNA samples from 3756 Mexican and US Latino individuals (1794 with type 2 diabetes and 1962 without diabetes) recruited from 1993 to 2013. One variant was further tested for allele frequency and association with type 2 diabetes in large multiethnic data sets of 14,276 participants and characterized in experimental assays. MAIN OUTCOME AND MEASURES Prevalence of type 2 diabetes. Secondary outcomes included age of onset, body mass index, and effect on protein function. RESULTS A single rare missense variant (c.1522G>A [p.E508K]) was associated with type 2 diabetes prevalence (odds ratio [OR], 5.48; 95% CI, 2.83-10.61; P = 4.4 × 10(-7)) in hepatocyte nuclear factor 1-α (HNF1A), the gene responsible for maturity onset diabetes of the young type 3 (MODY3). This variant was observed in 0.36% of participants without type 2 diabetes and 2.1% of participants with it. In multiethnic replication data sets, the p.E508K variant was seen only in Latino patients (n = 1443 with type 2 diabetes and 1673 without it) and was associated with type 2 diabetes (OR, 4.16; 95% CI, 1.75-9.92; P = .0013). In experimental assays, HNF-1A protein encoding the p.E508K mutant demonstrated reduced transactivation activity of its target promoter compared with a wild-type protein. In our data, carriers and noncarriers of the p.E508K mutation with type 2 diabetes had no significant differences in compared clinical characteristics, including age at onset. The mean (SD) age for carriers was 45.3 years (11.2) vs 47.5 years (11.5) for noncarriers (P = .49) and the mean (SD) BMI for carriers was 28.2 (5.5) vs 29.3 (5.3) for noncarriers (P = .19). CONCLUSIONS AND RELEVANCE Using whole-exome sequencing, we identified a single low-frequency variant in the MODY3-causing gene HNF1A that is associated with type 2 diabetes in Latino populations and may affect protein function. This finding may have implications for screening and therapeutic modification in this population, but additional studies are required.


BMC Proceedings | 2014

Data for Genetic Analysis Workshop 18: human whole genome sequence, blood pressure, and simulated phenotypes in extended pedigrees

Laura Almasy; Thomas D. Dyer; Juan Manuel Peralta; Goo Jun; Andrew R. Wood; Christian Fuchsberger; Marcio Almeida; Jack W. Kent; Sharon P. Fowler; Thomas W. Blackwell; Sobha Puppala; Satish Kumar; Joanne E. Curran; Donna M. Lehman; Gonçalo R. Abecasis; Ravindranath Duggirala; John Blangero

Genetic Analysis Workshop 18 (GAW18) focused on identification of genes and functional variants that influence complex phenotypes in human sequence data. Data for the workshop were donated by the T2D-GENES Consortium and included whole genome sequences for odd-numbered autosomes in 464 key individuals selected from 20 Mexican American families, a dense set of single-nucleotide polymorphisms in 959 individuals in these families, and longitudinal data on systolic and diastolic blood pressure measured at 1-4 examinations over a period of 20 years. Simulated phenotypes were generated based on the real sequence data and pedigree structures. In the design of the simulation model, gene expression measures from the San Antonio Family Heart Study (not distributed as part of the GAW18 data) were used to identify genes whose mRNA levels were correlated with blood pressure. Observed variants within these genes were designated as functional in the GAW18 simulation if they were nonsynonymous and predicted to have deleterious effects on protein function or if they were noncoding and associated with mRNA levels. Two simulated longitudinal phenotypes were modeled to have the same trait distributions as the real systolic and diastolic blood pressure data, with effects of age, sex, and medication use, including a genotype-medication interaction. For each phenotype, more than 1000 sequence variants in more than 200 genes present on the odd-numbered autosomes individually explained less than 0.01-2.78% of phenotypic variance. Cumulatively, variants in the most influential gene explained 7.79% of trait variance. An additional simulated phenotype, Q1, was designed to be correlated among family members but to not be associated with any sequence variants. Two hundred replicates of the phenotypes were simulated, with each including data for 849 individuals.


Diabetes | 2007

SORCS1: A Novel Human Type 2 Diabetes Susceptibility Gene Suggested by the Mouse

Mark O. Goodarzi; Donna M. Lehman; Kent D. Taylor; Xiuqing Guo; Jinrui Cui; Manuel J. Quiñones; Susanne M. Clee; Brian S. Yandell; John Blangero; Willa A. Hsueh; Alan D. Attie; Michael P. Stern; Jerome I. Rotter

OBJECTIVE—A small number of susceptibility genes for human type 2 diabetes have been identified by candidate gene analysis or positional cloning. Genes found to influence diabetes or related traits in mice are likely to be susceptibility genes in humans. SorCS1 is the gene identified as responsible for the mouse chromosome 19 T2dm2 quantitative trait locus for fasting insulin levels, acting via impaired insulin secretion and increased islet disruption in obese females. Genes that impair compensatory insulin secretion in response to obesity-induced insulin resistance may be particularly relevant to human diabetes. Thus, we sought to determine whether variation in the human SORCS1 gene was associated with diabetes-related traits. RESEARCH DESIGN AND METHODS—We assessed the contribution of variation in SORCS1 to human insulin–related traits in two distinct Mexican-American cohorts. One cohort (the Mexican-American Coronary Artery Disease [MACAD] cohort) consisted of nondiabetic individuals, allowing assessment of genetic association with subclinical intermediate insulin-related traits; the second cohort (the San Antonio Family Diabetes Study [SAFADS]) contained individuals with diabetes, allowing association analyses with overt disease. RESULTS—We first found association of SORCS1 single nucleotide polymorphisms and haplotypes with fasting insulin levels and insulin secretion in the MACAD cohort. Similar to our results in the mice, the genetic association was strongest in overweight women. We then observed association with diabetes risk and age at diagnosis in women of the SAFADS cohort. CONCLUSIONS—Identification of SORCS1 as a novel gene affecting insulin secretion and diabetes risk is likely to provide important insight into the biology of obesity-induced type 2 diabetes.


Diabetes Care | 2012

Statin use as a moderator of metformin effect on risk for prostate cancer among type 2 diabetic patients.

Donna M. Lehman; Carlos Lorenzo; Javier Hernandez; Chen Pin Wang

OBJECTIVE Metformin and statins have shown promise for cancer prevention. This study assessed whether the effect of metformin on prostate cancer (PCa) incidence varied by statin use among type 2 diabetic patients. RESEARCH DESIGN AND METHODS The study cohort consisted of 5,042 type 2 diabetic male patients seen in the Veteran Administration Health Care System who were without prior cancer and were prescribed with metformin or sulfonylurea as the exclusive hypoglycemic medication between fiscal years 1999 and 2005. Cox proportional hazards analyses were conducted to assess the differential hazard ratio (HR) of PCa due to metformin by statin use versus sulfonylurea use, where propensity scores of metformin and statin use were adjusted to account for imbalances in baseline covariates across medication groups. RESULTS Mean follow-up was ∼5 years, and 7.5% had a PCa diagnosis. Statin use modified the effect of metformin on PCa incidence (P < 0.0001). Metformin was associated with a significantly reduced PCa incidence among patients on statins (HR 0.69 [95% CI 0.50–0.92]; 17 cases/533 metformin users vs. 135 cases/2,404 sulfonylureas users) and an increased PCa incidence among patients not on statins (HR 2.15 [1.83–2.52]; 22 cases/175 metformin users vs. 186 cases/1,930 sulfonylureas users). The HR of PCa incidence for those taking metformin and statins versus those taking neither medication was 0.32 (0.25–0.42). CONCLUSIONS Among men with type 2 diabetes, PCa incidence among metformin users varied by their statin use. The potential beneficial influence on PCa by combination use of metformin and statin may be due to synergistic effects.


Documenta Ophthalmologica | 2002

Flash visual evoked potentials in the hypomyelinated mutant mouse shiverer

Donna M. Lehman; Joseph M. Harrison

Myelin basic protein (MBP) is an essential component of central nervous system (CNS) myelin, as demonstrated by shiverer mutant mice that have deletions of most of the Mbp structural gene. These mutants do not produce detectable MBP protein, and their CNS is hypomyelinated. Although the function of the visual pathway is presumed to be adversely affected by hypomyelination of the optic nerve, it has never been studied. We compared flash visual evoked potentials (FVEPs) of shiverer homozygotes with those of their wild-type littermates in order to characterize any dysfunction. There was a statistically significant delay in the implicit times of a negative component peaking at 85 ms and a large positive component peaking at 170 ms in the FVEPs of the shiverer mice. The amplitudes of the two components did not differ significantly in the shiverers and wild-type controls. Barring a retinal pathology, which cannot be excluded by these data, the delayed FVEP of the shiverer can likely be attributed to effects of hypomyelination of the optic nerve, optic tract and visual radiations on conduction time in the visual pathway and subsequent further post-synaptic delays.


Diabetes | 2007

Genotype by Diabetes Interaction Effects on the Detection of Linkage of Glomerular Filtration Rate to a Region on Chromosome 2q in Mexican Americans

Sobha Puppala; Rector Arya; Farook Thameem; Nedal H. Arar; Kusum Bhandari; Donna M. Lehman; Jennifer Schneider; Sharon P. Fowler; Vidya S. Farook; Vincent P. Diego; Laura Almasy; John Blangero; Michael P. Stern; Ravindranath Duggirala; Hanna E. Abboud

OBJECTIVE—Glomerular filtration rate (GFR) is used to assess the progression of renal disease. We performed linkage analysis to localize genes that influence GFR using estimated GFR data from the San Antonio Family Diabetes/Gallbladder Study. We also examined the effect of genotype by diabetes interaction (G × DM) on the detection of linkage to address whether genetic effects on GFR differ in diabetic and nondiabetic subjects. RESEARCH DESIGN AND METHODS—GFR (N = 453) was estimated using the recently recalculated Cockcroft-Gault (GFR-CGc) and the simplified Modification of Diet in Renal Disease (GFR-4VMDRD) formulae. Both estimates of GFR exhibited significant heritabilities, but only GFR-CGc showed significant G × DM interaction. We therefore performed multipoint linkage analyses on both GFR measures using models that did not include G × DM interaction effects (Model 1) and that included G × DM interaction effects (Model 2, in the case of GFR-CGc). RESULTS—The strongest evidence for linkage (Model 1) of both GFR-CGc (logarithm of odds [LOD] 2.9) and GFR-4VMDRD (LOD 2.6) occurred between markers D9S922 and D9S1120 on chromosome 9q. However, using Model 2, the strongest evidence for linkage of GFR-CGc on chromosome 2q was found near marker D2S427 (corrected LOD score [LODC] 3.3) compared with the LOD score of 2.7 based on Model 1. Potential linkages (LOD or LODC ≥1.2) were found only for GFR-CGc on chromosomes 3p, 3q, 4p, 8q, 11q, and 14q. CONCLUSIONS—We found a major locus on chromosome 2q that differentially influences GFR in diabetic and nondiabetic environments in the Mexican-American population.


Diabetes | 2007

P2 Promoter Variants of the Hepatocyte Nuclear Factor 4α Gene Are Associated With Type 2 Diabetes in Mexican Americans

Donna M. Lehman; Dawn K. Richardson; Christopher P. Jenkinson; Kelly J. Hunt; Thomas D. Dyer; Robin J. Leach; Rector Arya; Hanna E. Abboud; John Blangero; Ravindranath Duggirala; Michael P. Stern

Common and rare variants of the hepatocyte nuclear factor 4α (HNF4A) gene have been associated with type 2 diabetes and related traits in several populations suggesting the involvement of this transcription factor in diabetes pathogenesis. Single nucleotide polymorphisms (SNPs) within a large haplotype block surrounding the alternate P2 promoter, located ∼45 kb upstream from the coding region, have been investigated in several populations of varying ethnicity with inconsistent results. Additionally, SNPs located within the P1 promoter and coding region have also been inconsistently associated with type 2 diabetes. Characterization of variation across this gene region in Mexican-American populations has not been reported. We therefore examined polymorphisms across the HNF4A gene in a cohort of Mexican-American pedigrees and assessed their association with type 2 diabetes. We observed evidence for association of SNPs in the P2 promoter region with type 2 diabetes (P = 0.003) and its age at diagnosis (P = 0.003). The risk allele frequency (53%) was intermediate to that reported in Caucasian populations (20–27%) and Pima Indians (83%). No other SNPs were associated with either trait. These results support the possibility that a variant in the P2 promoter region of HNF4A, or variants in linkage disequilibrium within this region, contributes to susceptibility to type 2 diabetes in many ethnic populations including Mexican Americans.


Human Heredity | 2010

The Ser(326)Cys Polymorphism of 8-Oxoguanine Glycosylase 1 (OGG1) Is Associated with Type 2 Diabetes in Mexican Americans

Farook Thameem; Sobha Puppala; Donna M. Lehman; Michael P. Stern; John Blangero; Hanna E. Abboud; Ravindranath Duggirala; Samy L. Habib

Objective: Human 8-oxoguanine glycosylase 1 (OGG1) excises oxidatively damaged promutagenic base 8-oxoguanine, a lesion previously observed in a rat model of type 2 diabetes (T2DM). The objective of the present study is to determine whether genetic variation in OGG1 is associated with type 2 diabetes (T2DM) in a Mexican American cohort. Methods: Ten SNPs including two tagging SNPs (rs1052133, rs2072668) across the OGG1 gene region were selected from the Hapmap database and genotyped in the entire cohort (n = 670; 29% diabetes; 39 families) by TaqMan assay. Association analyses between the SNPs and T2DM were performed using the measured genotype approach as implemented in the program SOLAR. Results: Of the ten SNPs genotyped, only five were polymorphic. The minor allele frequencies of these 5 SNPs ranged from 1–38%. Of the SNPs examined for association, the Ser(326)Cys (rs1052133) exhibited significant association with T2DM (p = 0.016) after accounting for age and sex effects. Another intronic variant (rs2072668), which was in strong linkage disequilibrium (r2 = 0.96) with Ser(326)Cys also exhibited significant association with T2DM (p = 0.031). Conclusions: These results suggest for the first time that the variants in OGG1 could influence diabetes risk in these Mexican American families and support a role for alterations of OGG1 in the pathogenesis of T2DM.


BMC Genetics | 2003

Evidence for bivariate linkage of obesity and HDL-C levels in the Framingham Heart Study

Rector Arya; Donna M. Lehman; Kelly J. Hunt; Jennifer Schneider; Laura Almasy; John Blangero; Michael P. Stern; Ravindranath Duggirala

BackgroundEpidemiological studies have indicated that obesity and low high-density lipoprotein (HDL) levels are strong cardiovascular risk factors, and that these traits are inversely correlated. Despite the belief that these traits are correlated in part due to pleiotropy, knowledge on specific genes commonly affecting obesity and dyslipidemia is very limited. To address this issue, we first conducted univariate multipoint linkage analysis for body mass index (BMI) and HDL-C to identify loci influencing variation in these phenotypes using Framingham Heart Study data relating to 1702 subjects distributed across 330 pedigrees. Subsequently, we performed bivariate multipoint linkage analysis to detect common loci influencing covariation between these two traits.ResultsWe scanned the genome and identified a major locus near marker D6S1009 influencing variation in BMI (LOD = 3.9) using the program SOLAR. We also identified a major locus for HDL-C near marker D2S1334 on chromosome 2 (LOD = 3.5) and another region near marker D6S1009 on chromosome 6 with suggestive evidence for linkage (LOD = 2.7). Since these two phenotypes have been independently mapped to the same region on chromosome 6q, we used the bivariate multipoint linkage approach using SOLAR. The bivariate linkage analysis of BMI and HDL-C implicated the genetic region near marker D6S1009 as harboring a major gene commonly influencing these phenotypes (bivariate LOD = 6.2; LODeq = 5.5) and appears to improve power to map the correlated traits to a region, precisely.ConclusionsWe found substantial evidence for a quantitative trait locus with pleiotropic effects, which appears to influence both BMI and HDL-C phenotypes in the Framingham data.

Collaboration


Dive into the Donna M. Lehman's collaboration.

Top Co-Authors

Avatar

John Blangero

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanne E. Curran

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Rector Arya

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Sobha Puppala

Texas Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Thomas D. Dyer

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Laura Almasy

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Sharon P. Fowler

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Robin J. Leach

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Vidya S. Farook

Texas Biomedical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge