Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donna Sheedy is active.

Publication


Featured researches published by Donna Sheedy.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2003

Neuropathological alterations in alcoholic brains. Studies arising from the New South Wales Tissue Resource Centre

Clive Harper; Gavin Dixon; Donna Sheedy; Therese Garrick

Alcohol dependence and abuse are among the most costly health problems in the world from both social and economic points of view. Patterns of drinking appear to be changing throughout the world with more women and young people drinking heavily. Excessive drinking can lead to impairment of cognitive function and structural brain changes--some permanent, some reversible. Patterns of damage appear to relate to lifetime alcohol consumption but, more importantly, to associated medical complications. The most significant of these is the alcohol-related vitamin deficient state, the Wernicke-Korsakoff syndrome (WKS), which is caused by thiamin deficiency but is seen most commonly in alcoholics. Careful selection and classification of alcoholic cases into those with and without these complications, together with detailed quantitative neuropathological analyses has provided data that gives clues to the most vulnerable regions and cells in the brain. Brain shrinkage is largely accounted for by loss of white matter. Some of this damage appears to be reversible. Alcohol-related neuronal loss has been documented in specific regions of the cerebral cortex (superior frontal association cortex), hypothalamus and cerebellum. No change is found in basal ganglia, nucleus basalis, or serotonergic raphe nuclei. Many of these regions which are normal in uncomplicated alcoholics are damaged in those with the WKS. Dendritic and synaptic changes have been documented in alcoholics and these, together with receptor and transmitter changes, may explain functional changes and cognitive deficits, which precede more severe structural neuronal changes. A resource to provide human brain tissues for these types of studies has been developed at the University of Sydney--the New South Wales Tissue Resource Centre. The aim of this facility is to provide research groups throughout the world with fresh and/or frozen tissues from well-characterized cases of alcohol-related brain damage and matched controls. The development of new technologies in pathology and molecular biology means that many more questions can be addressed using appropriately stored human brain tissues. Examples of the application of some of these techniques, involving neurochemical, neuropharmacological, neuroimaging and gene expression studies are included in this paper. Important public health outcomes have arisen from some of these studies including the enrichment of bread flour with thiamin for the whole of Australia. Researchers with an interest in alcohol studies can access tissues from this brain bank.


Biological Psychiatry | 2013

High Mobility Group Box 1/Toll-like Receptor Danger Signaling Increases Brain Neuroimmune Activation in Alcohol Dependence

Fulton T. Crews; Liya Qin; Donna Sheedy; Ryan P. Vetreno; Jian Zou

BACKGROUND Innate immune gene expression is regulated in part through high mobility group box 1 (HMGB1), an endogenous proinflammatory cytokine, that activates multiple members of the interleukin-1/Toll-like receptor (TLR) family associated with danger signaling. We investigated expression of HMGB1, TLR2, TLR3, and TLR4 in chronic ethanol-treated mouse brain, postmortem human alcoholic brain, and rat brain slice culture to test the hypothesis that neuroimmune activation in alcoholic brain involves ethanol activation of HMGB1/TLR danger signaling. METHODS Protein levels were assessed using Western blot, enzyme-linked immunosorbent assay, and immunohistochemical immunoreactivity (+IR), and messenger RNA (mRNA) levels were measured by real time polymerase chain reaction in ethanol-treated mice (5 g/kg/day, intragastric, 10 days + 24 hours), rat brain slice culture, and postmortem human alcoholic brain. RESULTS Ethanol treatment of mice increased brain mRNA and +IR protein expression of HMGB1, TLR2, TLR3, and TLR4. Postmortem human alcoholic brain also showed increased HMGB1, TLR2, TLR3, and TLR4 +IR cells that correlated with lifetime alcohol consumption, as well as each other. Ethanol treatment of brain slice culture released HMGB1 into the media and induced the proinflammatory cytokine, interleukin-1 beta (IL-1β). Neutralizing antibodies to HMGB1 and small inhibitory mRNA to HMGB1 or TLR4 blunted ethanol induction of IL-1β. CONCLUSIONS Ethanol-induced HMGB1/TLR signaling contributes to induction of the proinflammatory cytokine, IL-1β. Increased expression of HMGB1, TLR2, TLR3, and TLR4 in alcoholic brain and in mice treated with ethanol suggests that chronic alcohol-induced brain neuroimmune activation occurs through HMGB1/TLR signaling.


Addiction Biology | 2011

Prodynorphin CpG-SNPs associated with alcohol dependence: elevated methylation in the brain of human alcoholics

Malik Mumtaz Taqi; Igor Bazov; Hiroyuki Watanabe; Donna Sheedy; Clive Harper; Kanar Alkass; Henrik Druid; Parri Wentzel; Fred Nyberg; Tatjana Yakovleva; Georgy Bakalkin

The genetic, epigenetic and environmental factors may influence the risk for neuropsychiatric disease through their effects on gene transcription. Mechanistically, these effects may be integrated through regulation of methylation of CpG dinucleotides overlapping with single‐nucleotide polymorphisms (SNPs) associated with a disorder. We addressed this hypothesis by analyzing methylation of prodynorphin (PDYN) CpG‐SNPs associated with alcohol dependence, in human alcoholics. Postmortem specimens of the dorsolateral prefrontal cortex (dl‐PFC) involved in cognitive control of addictive behavior were obtained from 14 alcohol‐dependent and 14 control subjects. Methylation was measured by pyrosequencing after bisulfite treatment of DNA. DNA binding proteins were analyzed by electromobility shift assay. Three PDYN CpG‐SNPs associated with alcoholism were found to be differently methylated in the human brain. In the dl‐PFC of alcoholics, methylation levels of the C, non‐risk variant of 3′‐untranslated region (3′‐UTR) SNP (rs2235749; C > T) were increased, and positively correlated with dynorphins. A DNA‐binding factor that differentially targeted the T, risk allele and methylated and unmethylated C allele of this SNP was identified in the brain. The findings suggest a causal link between alcoholism‐associated PDYN 3′‐UTR CpG‐SNP methylation, activation of PDYN transcription and vulnerability of individuals with the C, non‐risk allele(s) to develop alcohol dependence.


Australian and New Zealand Journal of Psychiatry | 2010

Selection of reference gene expression in a schizophrenia brain cohort

Cynthia Shannon Weickert; Donna Sheedy; Debora A. Rothmond; Irina Dedova; Samantha J. Fung; Therese Garrick; Jenny Wong; Antony J. Harding; Sinthuja Sivagnanansundaram; Clare Hunt; Carlotta E. Duncan; Nina Sundqvist; Shan-Yuan Tsai; Jasna Anand; Daren Draganic; Clive Harper

Objective: In order to conduct postmortem human brain research into the neuropatho-logical basis of schizophrenia, it is critical to establish cohorts that are well-characterized and well-matched. The aim of the present study was therefore to determine if specimen characteristics including: diagnosis, age, postmortem interval (PMI), brain acidity (pH), and/or the agonal state of the subject at death related to RNA quality, and to determine the most appropriate reference gene mRNAs. Methods: A matched cohort was selected of 74 subjects (schizophrenia/schizoaffective disorder, n = 37; controls, n = 37). Middle frontal gyrus tissue was pulverized, tissue pH was measured, RNA isolated for cDNA from each case, and RNA integrity number (RIN) measurements were assessed. Using quantitative reverse transcription–polymerase chain reaction, nine housekeeper genes were measured and a geomean calculated per case in each diagnostic group. Results: The RINs were very good (mean = 7.3) and all nine housekeeper control genes were significantly correlated with RIN. Seven of nine housekeeper genes were also correlated with pH; two clinical variables, agonal state and duration of illness, did have an effect on some control mRNAs. No major impact of PMI or freezer time on housekeeper mRNAs was detected. The results show that people with schizophrenia had significantly less PPIA and SDHA mRNA and tended to have less GUSB and B2M mRNA, suggesting that these control genes may not be good candidates for normalization. Conclusions: In the present cohort <10% variability in RINs was detected and the diagnostic groups were well matched overall. The cohort was adequately powered (0.80–0.90) to detect mRNA differences (25%) due to disease. The study suggests that multiple factors should be considered in mRNA expression studies of human brain tissues. When schizophrenia cases are adequately matched to control cases subtle differences in gene expression can be reliably detected.


Molecular Psychiatry | 2006

Differential protein expression in the prefrontal white matter of human alcoholics: a proteomics study.

Kimberley Alexander-Kaufman; Gabriel James; Donna Sheedy; Clive Harper; Izuru Matsumoto

Neuroimaging and post-mortem studies indicate that chronic alcohol use induces global changes in brain morphology, such as cortical and subcortical atrophy. Recent studies have shown that frontal lobe structures are specifically susceptible to alcohol-related brain damage and shrinkage in this area is largely due to a loss of white matter. This may explain the high incidence of cognitive dysfunction observed in alcoholics. Using a proteomics-based approach, changes in protein expression in the dorsolateral prefrontal region (BA9) white matter were identified in human alcoholic brains. Protein extracts from the BA9 white matter of 25 human brains (10 controls; eight uncomplicated alcoholics; six alcoholics complicated with hepatic cirrhosis; one reformed alcoholic) were separated using two-dimensional gel electrophoresis. Overall, changes in the relative expression of 60 proteins were identified (P<0.05, ANOVA) in the alcoholic BA9 white matter. In total, 18 protein spots have been identified using MALDI-TOF; including hNP22, α-internexin, transketolase, creatine kinase chain B, ubiquitin carboxy-terminal hydrolase L1 and glyceraldehyde-3-phosphate dehydrogenase. Several of these proteins have been previously implicated in alcohol-related disorders and brain damage. By identifying changes in protein expression in this region from alcoholics, hypotheses may draw upon more mechanistic explanations as to how chronic ethanol consumption causes white matter damage.


PLOS ONE | 2007

Neuroadaptations in human chronic alcoholics : dysregulation of the NF-κB system

Anna Ökvist; Sofia Johansson; Alexander Kuzmin; Igor Bazov; Roxana Merino-Martinez; Igor Ponomarev; R. Dayne Mayfield; R. Adron Harris; Donna Sheedy; Therese Garrick; Clive Harper; Yasmin L. Hurd; Lars Terenius; Thomas J. Ekström; Georgy Bakalkin; Tatjana Yakovleva

Background Alcohol dependence and associated cognitive impairments apparently result from neuroadaptations to chronic alcohol consumption involving changes in expression of multiple genes. Here we investigated whether transcription factors of Nuclear Factor-kappaB (NF-κB) family, controlling neuronal plasticity and neurodegeneration, are involved in these adaptations in human chronic alcoholics. Methods and Findings Analysis of DNA-binding of NF-κB (p65/p50 heterodimer) and the p50 homodimer as well as NF-κB proteins and mRNAs was performed in postmortem human brain samples from 15 chronic alcoholics and 15 control subjects. The prefrontal cortex involved in alcohol dependence and cognition was analyzed and the motor cortex was studied for comparison. The p50 homodimer was identified as dominant κB binding factor in analyzed tissues. NF-κB and p50 homodimer DNA-binding was downregulated, levels of p65 (RELA) mRNA were attenuated, and the stoichiometry of p65/p50 proteins and respective mRNAs was altered in the prefrontal cortex of alcoholics. Comparison of a number of p50 homodimer/NF-κB target DNA sites, κB elements in 479 genes, down- or upregulated in alcoholics demonstrated that genes with κB elements were generally upregulated in alcoholics. No significant differences between alcoholics and controls were observed in the motor cortex. Conclusions We suggest that cycles of alcohol intoxication/withdrawal, which may initially activate NF-κB, when repeated over years downregulate RELA expression and NF-κB and p50 homodimer DNA-binding. Downregulation of the dominant p50 homodimer, a potent inhibitor of gene transcription apparently resulted in derepression of κB regulated genes. Alterations in expression of p50 homodimer/NF-κB regulated genes may contribute to neuroplastic adaptation underlying alcoholism.


Brain Research | 2007

Validation of endogenous controls for quantitative gene expression analysis : Application on brain cortices of human chronic alcoholics

Sofia Johansson; Andrea Fuchs; Anna Ökvist; Mohsen Karimi; Clive Harper; Therese Garrick; Donna Sheedy; Yasmin L. Hurd; Georgy Bakalkin; Tomas J. Ekström

Real-time PCR is frequently used for gene expression quantification due to its methodological sensitivity and reproducibility. The gene expression is quantified by normalization to one or more reference genes, usually beta-actin (ACTB), glyceraldehyde-3-phosphate dehydrogenase (GAPD) or to ribosomal RNA (18S). However, different environmental or pathological conditions might also influence the expression of normalizing genes, which could severely skew the interpretation of quantitative results. This study evaluates whether 16 genes frequently used as endogenous controls in expression studies, can serve as such for comparison of human brain tissues of chronic alcoholics and control subjects. The prefrontal and motor cortices that are affected differently by chronic alcohol consumption were analyzed. The reference genes that have no or small differences in expression in alcoholics and control subjects, were found to be specific for each region: beta-actin (ACTB) and ribosomal large P0 (RPLP0) for the prefrontal cortex while importin 8 (IPO8) and RNA polymerase II (POLR2A) for the motor cortex. Four out of sixteen analyzed genes demonstrated significant differences in expression between alcoholics and controls: phosphoglycerate kinase (PGK1), hypoxanthine phosphoribosyl transferase (HPRT1) and peptidylprolyl isomerase A (PPIA) in the motor cortex and beta-2-microglobulin (B2M) in the prefrontal cortex. Our study demonstrates the importance of validation of endogenous control genes prior to real-time PCR analysis of human brain tissues. Prescribed and non-prescribed drugs, pathological or environmental conditions along with alcohol abuse may differentially influence expression of reference genes.


Cell and Tissue Banking | 2008

An Australian Brain Bank: a critical investment with a high return!

Donna Sheedy; Therese Garrick; Irina Dedova; Clare Hunt; R. Miller; Nina Sundqvist; Clive Harper

Research into neuropsychiatric disorders, including alcohol-related problems, is limited in part by the lack of appropriate animal models. However, the development of new technologies in pathology and molecular biology means that many more questions can be addressed using appropriately stored human brain tissues. The New South Wales Tissue Resource Centre (TRC) in the University of Sydney (Australia) is a human brain bank that can provide tissues to the neuroscience research community studying alcohol-related brain disorders, schizophrenia, depression and bipolar disorders. Carefully standardised operational protocols and integrated information systems means that the TRC can provide high quality, accurately characterised, tissues for research. A recent initiative, the pre-mortem donor program called “Using our Brains”, encourages individuals without neuropsychiatric illness to register as control donors, a critical group for all research. Community support for this program is strong with over 2,000 people registering their interest. Discussed herein are the protocols pertaining to this multifaceted facility and the benefits of investment, both scientific and financial, to neuroscience researchers and the community at large.


Alcoholism: Clinical and Experimental Research | 2008

Insulin and Insulin-Like Growth Factor Resistance in Alcoholic Neurodegeneration

Suzanne M. de la Monte; Ming Tong; Ariel C. Cohen; Donna Sheedy; Clive Harper; Jack R. Wands

BACKGROUND Chronic alcohol feeding of adult Long Evans rats causes major central nervous system abnormalities that link neuronal loss and impaired acetylcholine homeostasis to ethanol inhibition of insulin and insulin-like growth factor (IGF) signaling and increased oxidative stress. OBJECTIVES We now characterize the integrity of insulin and IGF signaling mechanisms and assess molecular indices of neurodegeneration in the cerebellar vermis and anterior cingulate gyrus of human alcoholics. RESULTS Alcoholic cerebella had increased neuronal loss, gliosis, lipid peroxidation, and DNA damage relative to control. Quantitative RT-PCR studies demonstrated reduced expression of insulin, insulin receptor and IGF-II receptor in the anterior cingulate, and reduced expression of insulin, IGF-I, and their corresponding receptors in the vermis. Competitive equilibrium binding assays revealed significantly reduced specific binding to the insulin, IGF-I, and IGF-II receptors in both the anterior cingulate and vermis of alcoholic brains. These effects of chronic alcohol abuse were associated with significantly reduced expression of choline acetyltransferase, which is needed for acetylcholine biosynthesis. CONCLUSIONS The results suggest that alcoholic neurodegeneration in humans is associated with insulin and IGF resistance with attendant impairment of neuronal survival mechanisms and acetylcholine homeostasis.


Pathology | 2002

Banking for the future: an Australian experience in brain banking

Sarris M; Therese Garrick; Donna Sheedy; Clive Harper

Summary The New South Wales (NSW) Tissue Resource Centre (TRC) has been set up to provide Australian and international researchers with fixed and frozen brain tissue from cases that are well characterised, both clinically and pathologically, for projects related to neuropsychiatric and alcohol‐related disorders. A daily review of the Department of Forensic Medicine provides initial information regarding a potential collection. If the case adheres to the strict inclusion criteria, the pathologist performing the postmortem examination is approached regarding retention of the brain tissue. The next of kin of the deceased is then contacted requesting permission to retain the brain for medical research. Cases are also obtained through donor programmes, where donors are assessed and consent to donate their brain during life. Once the brain is removed at autopsy, the brain is photographed, weighed and the volume determined, the brainstem and cerebellum are removed. The two hemispheres are divided, one hemisphere is fresh frozen and one fixed (randomised). Prior to freezing, the hemisphere is sliced into 1‐cm coronal slices and a set of critical area blocks is taken. All frozen tissues are kept bagged at ‐80°C. The other hemisphere is fixed in 15% buffered formalin for 2 weeks, embedded in agar and sliced at 3‐mm intervals in the coronal plane. Tissue blocks from these slices are used for neuropathological analysis to exclude any other pathology. The TRC currently has 230 cases of both fixed and frozen material that has proven useful in a range of techniques in many research projects. These techniques include quantitative analyses of brain regions using neuropathological, neurochemical, neuropharmacological and gene expression assays.

Collaboration


Dive into the Donna Sheedy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge