Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Doo Jin Choi is active.

Publication


Featured researches published by Doo Jin Choi.


International Immunopharmacology | 2013

Purification, characterization and immunomodulating activity of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.).

Ji Sun Lee; Andriy Synytsya; Hyun Bok Kim; Doo Jin Choi; Seul Lee; Jisun Lee; Woo Jung Kim; SeongJae Jang; Yong Il Park

A water-soluble polysaccharide (JS-MP-1) was isolated and purified from the Korean mulberry fruits Oddi (Morus alba L.) by crushing the fresh fruits then performing ethanol precipitation and DEAE-cellulose ion exchange chromatography. The neutral monosaccharide composition of the purified JS-MP-1 was determined to be composed mainly of galactose (37.6%, in mole percent), arabinose (36.3%), and rhamnose (18.4%), while other major sugars such as glucose, xylose, mannose, and fucose were present as minor components. HPLC analysis revealed that JS-MP-1 contains both galacturonic acid (GalA) and glucuronic acid (GlcA) at approximately 4:1 in mole percent. Monosaccharide composition, Fourier-transform infrared (FTIR) analysis, biochemical analysis, and elemental analysis suggested that JS-MP-1 is an acidic heteropolysaccharide, most likely a rhamnoarabinogalacturonan type plant pectic polysaccharide, with an apparent molecular mass of 1600 kDa containing no, or if any, negligible level of sulfate esters and proteins. Enzyme-Linked Immunosorbent Assay and RT-PCR analysis demonstrated that JS-MP-1 significantly stimulates murine RAW264.7 macrophage cells to release chemokines (RANTES and MIP-1α) and proinflammatory cytokines (TNF-α and IL-6) and to induce the expression of iNOS and COX-2, which are responsible for the production of NO and prostaglandin PGE2, respectively. These results suggest that the mulberry fruit-derived polysaccharide JS-MP-1 can act as a potent immunomodulator, and these observations may support the applicability of this polysaccharide as an immunotherapeutic adjuvant or the water extracts of the mulberry fruit as a beneficial health food.


Bioresource Technology | 2013

CHARACTERIZATION OF A RENEWABLE EXTRACELLULAR POLYSACCHARIDE FROM DEFATTED MICROALGAE DUNALIELLA TERTIOLECTA

Bon Geun Goo; Gu Baek; Doo Jin Choi; Yong Il Park; Andriy Synytsya; Roman Bleha; Dong Ho Seong; Choul-Gyun Lee; Jae Kweon Park

Extracellular polysaccharide (EPS) was isolated from defatted micro-algae Dunaliela tertiolecta and defined as linear (1→4)-α-D-glucan based on monosaccharide composition, enzymatic and spectroscopic analyses. Optimization and characterization of acidic and enzymatic hydrolyses of EPS have been performed for its potential use as a renewable biorefinery material. The hydrolytic methods were improved to assess the effect of substrate specificity, reaction time, pH, ionic strength and temperature on efficiency of glucose production. EPS was effectively converted into glucose within one-step enzymatic or acidic hydrolysis under optimized conditions. Over 90% recovery of glucose was achieved for both hydrolytic approaches. High potential production of EPS and high yield conversion of this substrate to glucose may allow further exploration of microalga D. tertiolecta as a potential biomass producer for biotechnological and industrial exploitation of bioethanol.


Life Sciences | 2014

Neuroprotective effects of corn silk maysin via inhibition of H2O2-induced apoptotic cell death in SK-N-MC cells

Doo Jin Choi; Sun-Lim Kim; Ji Won Choi; Yong Il Park

AIMS Neuroprotective effects of maysin, which is a flavone glycoside that was isolated from the corn silk (CS, Zea mays L.) of a Korean hybrid corn Kwangpyeongok, against oxidative stress (H2O2)-induced apoptotic cell death of human neuroblastoma SK-N-MC cells were investigated. MAIN METHODS Maysin cytotoxicity was determined by measuring cell viability using MTT and lactate dehydrogenase (LDH) assays. Intracellular reactive oxygen species (ROS) were measured using a 2,7-dichlorofluorescein diacetate (DCF-DA) assay. Apoptotic cell death was monitored by annexin V-FITC/PI double staining and by a TUNEL assay. Antioxidant enzyme mRNA levels were determined by real-time PCR. The cleavage of poly (ADP-ribose) polymerase (PARP) was measured by western blotting. KEY FINDINGS Maysin pretreatment reduced the cytotoxic effect of H2O2 on SK-N-MC cells, as shown by the increase in cell viability and by reduced LDH release. Maysin pretreatment also dose-dependently reduced the intracellular ROS level and inhibited PARP cleavage. In addition, DNA damage and H2O2-induced apoptotic cell death were significantly attenuated by maysin pretreatment. Moreover, maysin pretreatment (5-50 μg/ml) for 2h significantly and dose-dependently increased the mRNA levels of antioxidant enzymes (CAT, GPx-1, SOD-1, SOD-2 and HO-1) in H2O2 (200 μM)-insulted cells. SIGNIFICANCE These results suggest that CS maysin has neuroprotective effects against oxidative stress (H2O2)-induced apoptotic death of human brain SK-N-MC cells through its antioxidative action. This report is the first regarding neuroprotective health benefits of corn silk maysin by its anti-apoptotic action and by triggering the expression of intracellular antioxidant enzyme systems in SK-N-MC cells.


Life Sciences | 2013

Inhibitory effect of phloretin and biochanin A on IgE-mediated allergic responses in rat basophilic leukemia RBL-2H3 cells.

Mi Ja Chung; Jae Kyung Sohng; Doo Jin Choi; Yong Il Park

AIMS Anti-allergic effects and action mechanism of phloretin (Phl) and biochanin A (BioA) on the IgE-antigen complex-mediated allergic responses in rat basophilic leukemia RBL-2H3 cells were investigated. MAIN METHODS Cell viability, formation of reactive oxygen species (ROS), DPPH radical-scavenging activity, β-hexosaminidase release, production of interleukin (IL)-4, IL-13, and tumor necrosis factor-alpha (TNF-α) and phosphorylation of Akt and mitogen-activated protein kinase (MAPK) were determined by MTT assay, 2,7-dichlorofluorescein diacetate (DCF-DA) assay, DPPH radical-scavenging assay, reverse transcriptase polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and western blot analysis, respectively. KEY FINDINGS Ph1 and BioA dose-dependently inhibited the formation of ROS and the release of β-hexosaminidase from the RBL-2H3 cells and also showed DPPH radical-scavenging activity. Ph1 and BioA suppressed the antigen-induced phosphorylation of the downstream signaling intermediates, including MAPK and Akt, which are critical for the production of pro-inflammatory cytokines, and also significantly attenuated the production of IgE-mediated pro-inflammatory cytokines, such as IL-4, IL-13, and TNF-α. SIGNIFICANCE Phloretin and biochanin A attenuate the degranulation and allergic cytokine production through inhibition of intracellular ROS production and the phosphorylation of Akt and the MAPKs, such as ERK1/2, p38, and JNK. The results of this study suggested that these two plant flavonoids may have potent anti-allergic activity in vitro.


Life Sciences | 2014

Corn silk maysin induces apoptotic cell death in PC-3 prostate cancer cells via mitochondria-dependent pathway

Jisun Lee; Seul Lee; Sun-Lim Kim; Ji Won Choi; Jeong Yeon Seo; Doo Jin Choi; Yong Il Park

AIMS Despite recent advances in prostate cancer diagnostics and therapeutics, the overall survival rate still remains low. This study was aimed to assess potential anti-cancer activity of maysin, a major flavonoid of corn silk (CS, Zea mays L.), in androgen-independent human prostate cancer cells (PC-3). MAIN METHODS Maysin was isolated from CS of Kwangpyeongok, a Korean hybrid corn, via methanol extraction and preparative C18 reverse phase column chromatography. Maysin cytotoxicity was determined by either monitoring cell viability in various cancer cell lines by MTT assay or morphological changes. Apoptotic cell death was assessed by annexin V-FITC/PI double staining, depolarization of mitochondrial membrane potential (MMP), expression levels of Bcl-2 and pro-caspase-3 and by terminal transferase mediated dUTP-fluorescein nick end labeling (TUNEL) staining. Underlying mechanism in maysin-induced apoptosis of PC-3 cells was explored by evaluating its effects on Akt and ERK pathway. KEY FINDINGS Maysin dose-dependently reduced the PC-3 cell viability, with an 87% reduction at 200 μg/ml. Maysin treatment significantly induced apoptotic cell death, DNA fragmentation, depolarization of MMP, and reduction in Bcl-2 and pro-caspase-3 expression levels. Maysin also significantly attenuated phosphorylation of Akt and ERK. A combined treatment with maysin and other known anti-cancer agents, including 5-FU, etoposide, cisplatin, or camptothecin, synergistically enhanced PC-3 cell death. SIGNIFICANCE These results suggested for the first time that maysin inhibits the PC-3 cancer cell growth via stimulation of mitochondria-dependent apoptotic cell death and may have a strong therapeutic potential for the treatment of either chemo-resistant or androgen-independent human prostate cancer.


International Immunopharmacology | 2015

Inhibitory effects of kaempferol-3-O-rhamnoside on ovalbumin-induced lung inflammation in a mouse model of allergic asthma

Mi Ja Chung; Ramesh Prasad Pandey; Ji Won Choi; Jae Kyung Sohng; Doo Jin Choi; Yong Il Park

The modification of natural flavonoid by glycosylation alters their physicochemical and pharmacokinetic properties, such as increased water solubility and stability, reduced toxicity, and sometimes enhanced or even new pharmacological activities. Kaempferol (KF), a plant flavonoid, and its glycosylated derivative, kaempferol-3-O-rhamnoside (K-3-rh), were evaluated and compared for their anti-inflammatory, anti-oxidant, and anti-asthmatic effects in an asthma model mouse. The results showed that K-3-rh fully maintained its anti-inflammatory and anti-asthmatic effects compared with KF in an asthma model mouse. Both KF and K-3-rh significantly reduced the elevated inflammatory cell numbers in the bronchoalveolar lavage fluid (BALF). KF and K-3-rh also significantly inhibited the increase in Th2 cytokines (IL-4, IL-5, and IL-13) and TNF-α protein levels through inhibition of the phosphorylation Akt and effectively suppressed eosinophilia in a mouse model of allergic asthma. The total immunoglobulin (Ig) E levels in the serum and BALF were also blocked by KF and K-3-rh to similar extents. K-3-rh exerts similar or even slightly higher inhibitory effects on Th2 cytokines and IgE production compared with KF, whereas K-3-rh was less effective at DPPH radical scavenging and the inhibition of ROS generation in inflammatory cells compared with KF. These results suggested that the K-3-rh, as well as KF, may also be a promising candidate for the development of health beneficial foods or therapeutic agents that can prevent or treat allergic asthma.


Life Sciences | 2016

7,8-Dihydroxyflavone inhibits adipocyte differentiation via antioxidant activity and induces apoptosis in 3T3-L1 preadipocyte cells

Ji Won Choi; Chang Won Lee; Jisun Lee; Doo Jin Choi; Jae Kyung Sohng; Yong Il Park

AIMS Anti-obesity effects of a natural plant flavonoid 7,8-dihydroxyflavone (7,8-DHF) were evaluated using 3T3-L1 preadipocyte cells. MAIN METHODS The cell viability was determined using MTT assay. Effects of 7,8-DHF on intracellular lipid droplets and intracellular reactive oxygen species (ROS) were measured using a 2,7-dichlorofluorescein diacetate (DCF-DA) assay and Oil Red O staining method, respectively. Apoptotic cell death was monitored by annexin V-FITC/PI double staining and by a TUNEL assay. Antioxidant enzyme mRNA levels and protein expression of adipogenic transcription factors were determined by real-time PCR and Western blotting, respectively. KEY FINDINGS Whereas the cell viability of 3T3-L1 preadipocytes was not affected by lower concentrations of 7,8-DHF (<20 μM), higher concentrations of 7,8-DHF (>20 μM) induced apoptotic cell death. 7,8-DHF (<20 μM) significantly reduced the intracellular lipid droplets and the expression of major adipogenic transcription factors, such as CCAAT/enhancer-binding protein-α (C/EBP-α), C/EBP-β, and peroxisome proliferator activated receptor-γ (PPAR-γ). 7,8-DHF treatment also dose-dependently reduced the intracellular ROS level, attenuated MAPK pathway activation, and increased the expression of antioxidant enzymes, such as Mn-superoxide dismutase (Mn-SOD), catalase (CAT), and heme oxygenase-1 (HO-1). SIGNIFICANCE The results of this study indicated that 7,8-DHF inhibits the adipogenesis of 3T3-L1 preadipocyte cells by down-regulating the expression of adipogenic transcription factors, reduces lipid accumulation, and attenuates ROS accumulation by inducing antioxidant enzymes in differentiated 3T3-L1 cells, suggesting for the first time that 7,8-DHF has an anti-obesity effect in vitro via its anti-oxidant activity.


International Immunopharmacology | 2015

Ginseng marc-derived low-molecular weight oligosaccharide inhibits the growth of skin melanoma cells via activation of RAW264.7 cells.

Jeong Yeon Seo; Chang Won Lee; Doo Jin Choi; Jisun Lee; Jae Yeon Lee; Yong Il Park

Panax ginseng C.A. Meyer has been traditionally consumed to prevent or treat various medical disorders due to its diverse health benefits. Polysaccharides isolated from Panax ginseng have been known to possess various pharmacological activities, including immune modulating, anti-diabetic, and anti-obesity properties. Despite the increasing number of reports on the bioactivities of ginseng polysaccharides, little is known regarding the medicinal potential of ginseng-derived oligosaccharides. In this study, we prepared a lower-molecular weight oligosaccharide (GOS, MW. 2.2kDa) from ginseng polysaccharides (MW. 11-605kDa) by enzymatic degradation and evaluated for its immunostimulating activities in RAW 264.7 murine macrophage cells. GOS was shown to be a glucan type oligosaccharide mainly containing glucose residues (97.48 in molar %). Treatment with GOS (100-500μg/ml) dose-dependently enhanced the production of TNF-α, IL-6, and NO in RAW 264.7 cells. Western blot analysis indicated that GOS dose-dependently induced the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), p38, and nuclear factor κB (NFκB), which are upstream signalling molecules for cytokine production. While GOS was not cytotoxic to the RAW 264.7 macrophage cells at the concentration tested (up to 1000μg/ml), when B16F10 melanoma cells were co-cultured with the GOS-activated macrophages, the cell viability of melanoma cells was dose-dependently decreased through the induction of apoptotic cell death. Taken together, these results suggested that ginseng marc-derived GOS has anti-cancer activity in vitro against melanoma cells by potentiating macrophage function.


Nutrition Research | 2016

Neuroprotective effects of the Phellinus linteus ethyl acetate extract against H2O2-induced apoptotic cell death of SK-N-MC cells

Doo Jin Choi; Sarang Cho; Jeong Yeon Seo; Hyang Burm Lee; Yong Il Park

Numerous studies have suggested that neuronal cells are protected against oxidative stress-induced cell damage by antioxidants, such as polyphenolic compounds. Phellinus linteus (PL) has traditionally been used to treat various symptoms in East Asian countries. In the present study, we prepared an ethyl acetate extract from the fruiting bodies of PL (PLEA) using hot water extraction, ethanol precipitation, and ethyl acetate extraction. The PLEA contained polyphenols as its major chemical component, and thus, we predicted that it may exhibit antioxidant and neuroprotective effects against oxidative stress. The results showed that the pretreatment of human brain neuroblastoma SK-N-MC cells with the PLEA (0.1-5 μg/mL) significantly and dose-dependently reduced the cytotoxicity of H2O2 and the intracellular ROS levels and enhanced the expression of HO-1 (heme oxygenase-1) and antioxidant enzymes, such as CAT (catalase), GPx-1 (glutathione peroxidase-1), and SOD-1 and -2 (superoxide dismutase-1 and -2). The PLEA also directly scavenged free radicals. PLEA pretreatment also significantly attenuated DNA fragmentation and suppressed the mRNA expression and activation of mitogen-activated protein kinases extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 kinase, which are induced by oxidative stress and lead to cell death. PLEA pretreatment inhibited the activation of the apoptosis-related proteins caspase-3 and poly (ADP-ribose) polymerase. These results demonstrate that the PLEA has neuroprotective effects against oxidative stress (H2O2)-induced neuronal cell death via its antioxidant and anti-apoptotic properties. PLEA should be investigated in an in vivo model on its potential to prevent or ameliorate neurodegenerative disease.


Biotechnology and Bioprocess Engineering | 2012

Purification and characterization of a polysialic acid-specific sialidase from Pseudomonas fluorescens JK-0412

Jae Kweon Park; Doo Jin Choi; Sung Min Kim; Ha Na Choi; Joo Woong Park; Sung Jae Jang; Young Kug Choo; Choul Gyun Lee; Yong Il Park

An enzyme with polySia degrading activity was purified from a culture filtrate of Pseudomonas fluorescens JK-0412 to apparent homogeneity using DEAE-Sepharose CL-6B column chomatography and fast performance liquid chomatography separation on a Mono-Q column. The molecular mass of the purified enzyme (tentatively named Endo-PS) was approximately 20 kDa on SDS-PAGE and 120 kDa on native-PAGE gels, suggesting that the active form is a hexamer. Although 12 residues of the Endo-PS N-terminal amino acid sequence showed 75% homology to the 21 kDa chitin binding protein (CBP21) of Serratia marcescens 2170, no significant similarity to other known proteins was observed. Apparent Km and Vmax values of Endo-PS toward the artificial substrate 4-methylumbelliferyl-sialic acid (4-MU-Neu5Ac) were 0.08 mM and 16 nmol/mg/min, respectively. The enzyme was maximally active at 37°C and pH 8.0. Interestingly, the enzyme was shown to hydrolyze the natural substrate, α2,8-linked polySia (colominic acid), in an endo-acting manner. However, no activity toward α2,3- or α2,6-sialyllactose was observed. Under optimal conditions, oligoSia ranging from 2 to 30 residues long were liberated by the cleavage of polySia, as identified by HPAEC-PED. Therefore, the purified enzyme Endo-PS was found to be a polySia-specific sialidase. This is the first report to describe the properties of a bacterial polySia-specific sialidase. Therefore, this enzyme may be a useful tool for both industrial oligoSia production and research on the structure and biological functions of polySia in nature.

Collaboration


Dive into the Doo Jin Choi's collaboration.

Top Co-Authors

Avatar

Yong Il Park

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Mi Ja Chung

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Jae Kweon Park

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Ji Won Choi

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Jisun Lee

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Chang Won Lee

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeong Yeon Seo

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Seok-Jin Yoon

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Seul Lee

Catholic University of Korea

View shared research outputs
Researchain Logo
Decentralizing Knowledge