Dora Višnjić
University of Zagreb
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dora Višnjić.
Journal of Bone and Mineral Research | 2001
Dora Višnjić; Ivo Kalajzic; Gloria Gronowicz; Hector L. Aguila; Stephen H. Clark; Alexander C. Lichtler; David W. Rowe
Two transgenic mouse lines were generated with a DNA construct bearing a 2.3‐kilobase (kb) fragment of the rat α1 type I collagen promoter driving a truncated form of the herpes thymidine kinase gene (Col2.3Δtk). Expression of the transgene was found in osteoblasts coincident with other genetic markers of early osteoblast differentiation. Mice treated with ganciclovir (GCV) for 16 days displayed extensive destruction of the bone lining cells and decreased osteoclast number. In addition, a dramatic decrease in bone marrow elements was observed, which was more severe in the primary spongiosum and marrow adjacent to the diaphyseal endosteal bone. Immunostaining for transgene expression within the bone marrow was negative and marrow stromal cell cultures developed normally in the presence of GCV until the point of early osteoblast differentiation. Our findings suggest that the early differentiating osteoblasts are necessary for the maintenance of osteoclasts and hematopoiesis. Termination of GCV treatment produced an exaggerated response of new bone formation in cortical and trabecular bone. The Col2.3Δtk mouse should be a useful model to define the interrelation between bone and marrow elements as well as a model to analyze the molecular and cellular events associated with a defined wave of osteogenesis on termination of GCV treatment.
Journal of Bone and Mineral Research | 2001
S. Dacic; Ivo Kalajzic; Dora Višnjić; Alexander C. Lichtler; David W. Rowe
The modular organization of the type I collagen promoter allows creation of promoter‐reporter constructs with preferential activity in different type I collagen‐producing tissues that might be useful to mark cells at different stages of osteoblastic differentiation. Primary marrow stromal cell (MSC) and mouse calvarial osteoblast (mCOB) cultures were established from transgenic mice harboring different Col1a1 promoter fragments driving chloramphenicol acetyltransferase (CAT). In these models, Col1a1 messenger RNA (mRNA) and alkaline phosphatase (ALP) are the first markers of differentiation appearing soon after the colonies develop. Bone sialoprotein (BSP) is detected 2‐3 days later, followed by osteocalcin (OC) expression and nodule mineralization. A 3.6 Col1a1 fragment (ColCAT3.6) initiated activity concomitant with ALP staining and type I collagen mRNA expression. In contrast, a 2.3 Col1a1 fragment (ColCAT2.3) became active coincident with BSP expression. The pattern of transgene expression assessed by immunostaining was distinctly different. ColCAT3.6 was expressed within and at the periphery of developing nodules whereas the ColCAT2.3 expression was restricted to the differentiated nodules. The feasibility of using green fluorescent protein (GFP) as a marker of osteoblast differentiation was evaluated in ROS17/2.8 cells. A 2.3‐kilobase (kb) Col1a1 promoter driving GFP (pOB4Col2.3GLP) was stably transfected into the cell line and positive clones were selected. Subcultures lost and then regained GFP expression that was localized in small clusters of cells throughout the culture. This suggests that expression from the 2.3‐kb Col1A1 fragment is determined by the state of differentiation of the ROS17/2.8 cells. Col1a1 transgenes should be useful in appreciating the heterogeneity of a primary or immortalized culture undergoing osteoblastic differentiation.
Leukemia | 2006
Katarina Matković; Federica Brugnoli; Valeria Bertagnolo; Hrvoje Banfić; Dora Višnjić
The pharmacological inhibitors of phosphoinositide 3-kinase (PI3K)/Akt pathway have been proposed in the treatment of leukemia based on their antiproliferative effects. However, several studies demonstrated the activation of PI3K in the nuclei of all-trans-retinoic acid (ATRA) – differentiated HL-60 cells, raising the possibility that PI3K/Akt-inhibitors may block antitumor properties of retinoids. The aim of the present study was to investigate the possible activation of nuclear Akt in ATRA-treated cells and to test the effects of Akt-inhibitors on ATRA-mediated differentiation. The Akt-activity was found to be increased in the nuclei and lysates of ATRA-differentiated HL-60 and NB4 cells. The down-modulation of the expression of Akt protein in HL-60 cells using siRNA reduces the CD11b expression in ATRA-treated cells. The treatment of both cell lines with the commercially available Akt inhibitors inhibited the growth of both control and ATRA-treated cells. Akt-inhibitors had no inhibitory effects on ATRA-mediated growth arrest and the expression of CD11b in HL-60 cells, but increased the percentage of control cells expressing CD11b. In contrast, the presence of Akt inhibitors reduced the expression of CD11b in ATRA-treated NB4 cells.
FEBS Letters | 2002
Dora Višnjić; Vladiana Crljen; Josip Ćurić; Drago Batinić; Stefano Volinia; Hrvoje Banfić
The activity of nuclear phosphoinositide 3‐kinase C2β (PI3K‐C2β) was investigated in HL‐60 cells induced to differentiate along granulocytic or monocytic lineages. A significant increase in the activity of immunoprecipitated PI3K‐C2β was observed in the nuclei and nuclear envelopes isolated from all‐trans‐retinoic acid (ATRA)‐differentiated cells which was inhibited by the presence of PI3K inhibitor LY 294002. High‐performance liquid chromatography analysis of inositol lipids showed an increased incorporation of radiolabelled phosphate in both PtdIns(3)P and PtdIns(3,4,5)P3 with no changes in the levels of PtdIns(4)P, PtdIns(3,4)P2 and PtdIns(4,5)P2. Western blot analysis of the PI3K‐C2β immunoprecipitates with anti‐P‐Tyr antibody revealed a significant increase in the level of the immunoreactive band corresponding to PI3K‐C2β in the nuclei and nuclear envelopes isolated from ATRA‐differentiated cells.
Biochimica et Biophysica Acta | 2003
Dora Višnjić; Josip Ćurić; Vladiana Crljen; Drago Batinić; Stefano Volinia; Hrvoje Banfić
The activity of nuclear phosphoinositide 3-kinase C2beta (PI3K-C2beta) was investigated in HL-60 cells blocked by aphidicolin at G(1)/S boundary and allowed to progress synchronously through the cell cycle. The activity of immunoprecipitated PI3K-C2beta in the nuclei and nuclear envelopes showed peak activity at 8 h after release from the G(1)/S block, which correlates with G(2)/M phase of the cell cycle. In the nuclei and nuclear envelopes isolated from HL-60 cells at 8 h after release from G(1)/S block, a significant increase in the level of incorporation of radiolabeled phosphate into phosphatidylinositol 3-phosphate (PtdIns(3)P) was observed with no change in the level of radiolabeled PtdIns(4)P, PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3). On Western blots, PI3K-C2beta revealed a single immunoreactive band of 180 kDa, whereas in the nuclei and nuclear envelopes isolated at 8 h after release, the gel shift of 18 kDa was observed. When nuclear envelopes were treated for 20 min with mu-calpain in vitro, the similar gel shift and increase in PI3K-C2beta activity was observed which was completely inhibited by pretreatment with calpain inhibitor calpeptin. The presence of PI3K inhibitor LY 294002 completely abolished the calpain-mediated increase in the activity of PI3K-C2beta but did not prevent the gel shift. When HL-60 cells were released from G(1)/S block in the presence of either calpeptin or LY 294002, the activation of nuclear PI3K-C2beta was completely inhibited. These results demonstrate the calpain-mediated activation of the nuclear PI3K-C2beta during G(2)/M phase of the cell cycle in HL-60 cells.
FEBS Letters | 2004
Vladiana Crljen; Dora Višnjić; Hrvoje Banfić
Phospholipase C (PLC) was purified from the membrane‐depleted rat liver nuclei. About 60% of the total PLC‐activity corresponded to β1b isoform, 30% to PLC‐γ1 and less than 10% to PLC‐δ1. PLC‐β1b and ‐γ1 were found in the nuclear matrix, while PLC‐δ1 was detected in the chromatin. Two peaks of an increase in the total PLC‐activity were detected occurring at 6 and 20 h after partial hepatectomy. An early increase in PLC‐β1b activity in the nuclear matrix was associated with serine phosphorylation of the enzyme, while the later increase paralleled the increase in the amount of protein. The increase in the PLC‐γ1 activity measured at 6 and 20 h after partial hepatectomy was associated with tyrosine phosphorylation of the enzyme. The activity of PLC‐δ1 and the amount of the protein found in the chromatin was increased only at 20 h after partial hepatectomy.
Biochemical Journal | 1999
Dora Višnjić; Drago Batinić; Hrvoje Banfić
The signalling mechanisms responsible for the hydrolysis of sphingomyelin mediated by 1,25-dihydroxyvitamin D(3) [1, 25(OH)(2)D(3)] and interferon gamma (IFN-gamma) in HL-60 cells were investigated. IFN-gamma was found to increase selectively the activity of cytosolic, Mg(2+)-independent, neutral sphingomyelinase. The treatment of HL-60 cells with the combination of 1,25(OH)(2)D(3) and IFN-gamma had an additive effect on sphingomyelin hydrolysis, ceramide release and the activity of cytosolic, Mg(2+)-independent, neutral sphingomyelinase. The pretreatment of HL-60 cells with staurosporine, chelerythrine chloride and bisindolylmaleimide abolished the activity of sphingomyelinase in response to 1,25(OH)(2)D(3) and IFN-gamma. Calphostin C, which acts on the regulatory site of protein kinase C (PKC), and Gö 6976, a selective inhibitor of Ca(2+)-dependent PKC isoforms, inhibited the effect of 1,25(OH)(2)D(3) but had no effect on the IFN-gamma-mediated increase in activity of sphingomyelinase. Isoform-specific antibodies were used to deplete different PKC isoforms from cytosol before the treatment of the cytosolic fraction with 1,25(OH)(2)D(3), arachidonic acid (AA) and PMA. The depletion of PKC isoforms beta(1), beta(2), epsilon, eta, mu, zeta and lambda had no effect on the activation of sphingomyelinase induced by 1,25(OH)(2)D(3) or by AA. The depletion of PKC alpha from the cytosol completely abolished the effect of 1,25(OH)(2)D(3) on sphingomyelinase activity but had no effect on the AA-induced activity of sphingomyelinase. PMA had no effect on the activity of sphingomyelinase in either untreated or alpha-depleted cytosol but significantly increased the activity of sphingomyelinase when added to cytosol depleted of PKC delta. Moreover, PMA inhibited the effect of 1,25(OH)(2)D(3) on sphingomyelinase activation but the inhibitory effect was abolished by prior depletion of PKC delta from the cytosol. These studies demonstrate that 1,25(OH)(2)D(3)-induced activation of sphingomyelinase is mediated by PKC alpha. Furthermore, PKC delta had an inhibitory effect on sphingomyelinase, suggesting that the difference between the 1,25(OH)(2)D(3)- and PMA-mediated effects on sphingomyelin turnover depends on the specific regulation of the PKC alpha and PKC delta isoforms.
Pathology & Oncology Research | 2011
Joško Miše; Vilma Dembitz; Hrvoje Banfić; Dora Višnjić
A novel strategy has been suggested to enhance rapamycin-based cancer therapy through combining mammalian target of rapamycin (mTOR)-inhibitors with an inhibitor of the phosphatydilinositol 3-kinase PI3K/Akt or mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. However, recent study demonstrated the potentiating effect of rapamycin on all-trans-retinoic acid (ATRA)-mediated differentiation of acute myelogenous leukemia (AML) cells, prompting us to investigate the effects of longitudinal inhibition of PI3K/Akt/mTOR signaling pathway on both proliferation and differentiative capacity of AML. In NB4, HL-60, U937 and K562 cell lines, rapamycin exerted minimal antiproliferative effects, and combining PI3K inhibitor LY 294002 and rapamycin inhibited proliferation more than LY 294002 alone. Rapamycin potentiated differentiation of ATRA-treated NB4 cells, but the combination of rapamycin and LY 294002 inhibited the expression of CD11b in both ATRA- and phorbol myristate acetate (PMA)-stimulated cells more than PI3K inhibitor alone. These results demonstrate that, although the combination of PI3K inhibitor and rapamycin is more effective in inhibiting proliferation of AML, the concomitant inhibition of PI3K and mTOR by LY 294002 and rapamycin has more inhibitory effects on ATRA-mediated differentiation than the presence of PI3K-inhibitor alone, and diminishes positive effects of rapamycin on leukemia cell differentiation.
Journal of Biological Chemistry | 2013
Hrvoje Banfić; Antonio Bedalov; John D. York; Dora Višnjić
Background: Inositol pyrophosphates mediate some effects of activated Plc1. Results: Plc1 and Kcs1 activate early after release from G1 block and increase the level of InsP7 and InsP8. Conclusion: Plc1- and Kcs1-mediated increase in pyrophosphates is important for progression through S phase. Significance: This appears to be the first evidence for a link between Kcs1-generated pyrophosphates and cell cycle. Several studies have demonstrated the activation of phosphoinositide-specific phospholipase C (Plc) in nuclei of mammalian cells during synchronous progression through the cell cycle, but the downstream targets of Plc-generated inositol 1,4,5-trisphosphate are poorly described. Phospholipid signaling in the budding yeast Saccharomyces cerevisiae shares similarities with endonuclear phospholipid signaling in mammals, and many recent studies point to a role for inositol phosphates, including InsP5, InsP6, and inositol pyrophosphates, in mediating the action of Plc. In this study, we investigated the changes in inositol phosphate levels in α-factor-treated S. cerevisiae, which allows cells to progress synchronously through the cell cycle after release from a G1 block. We found an increase in the activity of Plc1 early after release from the block with a concomitant increase in the levels of InsP7 and InsP8. Treatment of cells with the Plc inhibitor U73122 prevented increases in inositol phosphate levels and blocked progression of cells through S phase after pheromone arrest. The enzymatic activity of Kcs1 in vitro and HPLC analysis of [3H]inositol-labeled kcs1Δ cells confirmed that Kcs1 is the principal kinase responsible for generation of pyrophosphates in synchronously progressing cells. Analysis of plc1Δ, kcs1Δ, and ddp1Δ yeast mutants further confirmed the role that a Plc1- and Kcs1-mediated increase in pyrophosphates may have in progression through S phase. Our data provide genetic, metabolic, and biochemical evidence that synthesis of inositol pyrophosphates through activation of Plc1 and Kcs1 plays an important role in the signaling response required for cell cycle progression after mating pheromone arrest.
Biochemical Journal | 2009
Hrvoje Banfic; Dora Višnjić; Nikica Miše; Sanjeevi Balakrishnan; Simona Deplano; Yuri E. Korchev; Jan Domin
Although the class II phosphoinositide 3-kinase enzymes PI3K-C2alpha and PI3K-C2beta act acutely downstream of cell surface receptors they have also been localized to nuclei in mammalian cells. As with the class I PI3K enzymes, the relationship between the pools of enzyme present in cytoplasm and nuclei remains poorly understood. In this study we test the hypothesis that PI3K-C2beta translocates to nuclei in response to growth factor stimulation. Fractionating homogenates of quiescent cells revealed that less than 5% of total PI3K-C2beta resides in nuclei. Stimulation with epidermal growth factor sequentially increased levels of this enzyme, firstly in the cytosol and secondly in the nuclei. Using detergent-treated nuclei, we showed that PI3K-C2beta co-localized with lamin A/C in the nuclear matrix. This was confirmed biochemically, and a phosphoinositide kinase assay showed a statistically significant increase in nuclear PI3K-C2beta levels and lipid kinase activity following epidermal growth factor stimulation. C-terminal deletion and point mutations of PI3K-C2beta demonstrated that epidermal growth factor-driven translocation to the nucleus is dependent on a sequence of basic amino acid residues (KxKxK) that form a nuclear localization motif within the C-terminal C2 domain. Furthermore, when this sequence was expressed as an EGFP (enhanced green fluorescent protein) fusion protein, it translocated fluorescence into nuclei with an efficiency dependent upon copy number. These data demonstrate that epidermal growth factor stimulates the appearance of PI3K-C2beta in nuclei. Further, this effect is dependent on a nuclear localization signal present within the C-terminal C2 domain, indicating its bimodal function regulating phospholipid binding and shuttling PI3K-C2beta into the nucleus.