Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dóra Zelena is active.

Publication


Featured researches published by Dóra Zelena.


Hormones and Behavior | 2007

Signs of attenuated depression-like behavior in vasopressin deficient Brattleboro rats

M. Mlynarik; Dóra Zelena; Gyorgy Bagdy; G. B. Makara; D. Jezova

Vasopressin, a peptide hormone functioning also as a neurotransmitter, neuromodulator and regulator of the stress response is considered to be one of the factors related to the development and course of depression. In the present study, we have tested the hypothesis that congenital deficit of vasopressin in Brattleboro rats leads to attenuated depression-like behavior in tests modeling different symptoms of depression. In addition, hypothalamic-pituitary-adrenocortical axis activity was investigated. Vasopressin deficient rats showed signs of attenuated depression-like behavior in forced swimming and sucrose preference tests, while their behavior on elevated plus maze was unchanged. Vasopressin deficiency had no influence on basal levels of ACTH and corticosterone and had only mild impact on hormonal activation in response to forced swimming and plus-maze exposure. However, vasopressin deficient animals showed higher level of dexamethasone induced suppression of corticosterone response to restraint stress and higher basal levels of corticotropin-releasing hormone mRNA in the hypothalamic paraventricular nucleus. In conclusion, present data obtained in vasopressin deficient rats show that vasopressin is involved in the development of depression-like behavior, in particular of the coping style and anhedonia. Moreover, behavioral and endocrine responses were found to be dissociated. We suggest that brain vasopressinergic circuits distinct from those regulating the HPA axis are involved in generating depression-like behavior.


Brain Research Bulletin | 2004

Effects of repeated restraint stress on hypothalamo-pituitary-adrenocortical function in vasopressin deficient Brattleboro rats.

Dóra Zelena; Anna Földes; Zsuzsa Mergl; István Barna; Krisztina Kovács; G. B. Makara

Arginine-vasopressin (AVP) has been proposed to be an important mediator during chronic stress in the regulation of the hypothalamo-pituitary-adrenal axis. In the present study we addressed the role of AVP in maintaining adrenocortical responsiveness during chronic stress using the AVP deficient mutant Brattleboro rat. Heterozygous Brattleboro rats (di/+) served as controls and were compared to homozygous rats (di/di) with diabetes insipidus. Sixty minutes daily restraint was repeated for 5, 8, 11 or 15 days and organ weights, plasma adrenocorticotropin (ACTH) and corticosterone levels and anterior pituitary proopiomelanocortin (POMC) mRNA and ACTH content were measured. The body, adrenal and thymus weight changes induced by chronic stress became significant between 5 and 8 repetition and AVP deficiency had no effect on these parameters. The first indication that AVP has a role to play appears after 11 repetitions. In the di/di group at the end of 11th restraint, the plasma ACTH was decreased when compared to the di/+ rats. In animals with indwelling cannulas some adaptation could be seen in ACTH response without any difference between di/+ and di/di rats after 15 restraints. The corticosterone- and prolactin-elevations induced by restraint did not habituate in the di/+ and the di/di rats. Chronic stress increased POMC mRNA in the anterior pituitary similarly in di/+ and di/di rats. Although AVP seems to be necessary for a full ACTH response, most of the other signs of chronic stress after repeated restraint occur unchanged in the absence of AVP in both genders. This suggests that either AVP is not indispensable for activating the hypothalamo-pituitary-adrenocortical system by chronic stress or the absence of AVP is compensated by other mediators in Brattleboro rats.


Neurochemistry International | 2010

Nesfatin-1/NUCB2 may participate in the activation of the hypothalamic-pituitary-adrenal axis in rats

Katalin Könczöl; Ibolya Bodnár; Dóra Zelena; Ottó Pintér; Rege Sugárka Papp; Miklós Palkovits; György Nagy; Zsuzsanna Tóth

Nesfatin-1 is an anorexigenic peptide originating from nucleobinding-2 (NUCB2) protein. Nesfatin-1/NUCB2-immunoreactive neurons are present in the hypothalamic paraventricular nucleus, the center of the stress-axis, and in the medullary A1 and A2 catecholamine cell groups. The A1 and A2 cell groups mediate viscerosensory stress information toward the hypothalamic paraventricular nucleus. They contain noradrenaline, but subsets of these neurons also express prolactin-releasing peptide acting synergistically with noradrenaline in the activation of the hypothalamic paraventricular nucleus during stress. We investigated the possible role of nesfatin-1/NUCB2 in the stress response. Intracerebro-ventricular administration of nesfatin-1 elevated both plasma adrenocorticotropin and corticosterone levels, while in vitro stimulation of the hypophysis was ineffective. Single, long-duration restraint stress activated (Fos positivity) many of the nesfatin-1/NUCB2-immunoreactive neurons in the parvocellular part of the hypothalamic paraventricular nucleus, evoked nesfatin-1/NUCB2 mRNA expression in the parvocellular part of the paraventricular nucleus and in the A1, but not in the A2 cell group. Nesfatin-1/NUCB2 was shown to co-localize in a high percentage of prolactin-releasing peptide producing neurons, in both medullary catecholamine cell groups further supporting its involvement in the stress response. Finally, bilateral adrenalectomy evoked an increasing nesfatin-1/NUCB2 mRNA expression, indicating that it is under the negative feedback of adrenal steroids. These data provide the first evidence for possible participation of nesfatin-1/NUCB2 in the stress-axis regulation, both at the level of the brainstem and in the hypothalamus.


Neuroendocrinology | 1999

Simultaneous blockade of two glutamate receptor subtypes (NMDA and AMPA) results in stressor-specific inhibition of prolactin and corticotropin release

Dóra Zelena; G. B. Makara; Daniela Jezova

Many neurons express simultaneously two or more isotypes of glutamate receptors, so that pharmacological modulation of more than one receptor may be necessary to reveal the role of glutamate in mediating physiological processes. The present studies were aimed at evaluating involvement of endogenous glutamate in triggering plasma prolactin (PRL) and adrenocorticotropic hormone (ACTH) levels in response to three different stress stimuli (footshock, immobilization and ether stress). Blockade of glutamate receptor subtypes was achieved by the administration of the NMDA antagonist dizocilpine (MK-801, 0.2 mg/kg) and the selective AMPA antagonist GYKI 52466 (10 mg/kg). Rats were pretreated for 4–5 days and then exposed to stressful stimulation. Basal hormone levels were not affected by the antagonists. In male rats, combined, but not separate blockade of NMDA and AMPA/kainate subtypes of glutamate receptors prevented the rise in plasma PRL in response to footshock stress. In female rats, footshock-induced PRL release was inhibited even by separate blockade of NMDA receptors by dizocilpine, suggesting that the PRL system of females is more sensitive to the effect of NMDA antagonists than that of males. None of the treatments affected PRL release during immobilization or ether stress. Simultaneous blockade of NMDA and AMPA receptor subtypes resulted in a mild inhibition of immobilization-induced ACTH release without any effect on ACTH response to footshock or ether stress. The data suggest that involvement of glutamatergic pathways in neuroendocrine response during stress is selective for discrete stress stimuli and stress hormones. In addition a concerted action of glutamate on both NMDA and non-NMDA receptor subtypes is involved in the control of PRL release during footshock stress.


International Journal of Obesity | 2012

Nesfatin-1 exerts long-term effect on food intake and body temperature

Katalin Könczöl; Ottó Pintér; Szilamér Ferenczi; János Varga; Krisztina Kovács; Miklós Palkovits; Dóra Zelena; Zsuzsanna E. Tóth

OBJECTIVE To determine whether the anorexigenic peptide, nesfatin-1 affects energy expenditure, and to follow the time course of its effects. DESIGN Food intake duration, core body temperature, locomotor activity and heart rate of rats were measured by telemetry for 48 h after a single intracerebroventricular injection of 25 or 100 pmol nesfatin-1 applied in the dark or the light phase of the day. Body weight, food and water intake changes were measured daily. Furthermore, cold-responsive nesfatin-1/NUCB2 neurons were mapped in the brain. RESULTS Nesfatin-1 reduced duration of nocturnal food intake for 2 days independently of circadian time injected, and raised body temperature immediately, or with little delay depending on the dose and circadian time applied. The body temperature remained higher during the next light phases of the 48 h observation period, and the circadian curve of temperature flattened. After light phase application, the heart rate was elevated transiently. Locomotion did not change. Daily food and water intake, as well as body weight measurements point to a potential decrease in all parameters on the first day and some degree of compensation on the second day. Cold-activated (Fos positive) nesfatin-1/NUCB2 neurones have been revealed in several brain nuclei involved in cold adaptation. Nesfatin-1 co-localised with prepro-thyrotropin-releasing hormone in cold responsive neurones of the hypothalamic paraventricular nucleus, and in neurones of the nucleus raphe pallidus and obscurus that are premotor neurones regulating brown adipose tissue thermogenesis and skin blood flow. CONCLUSION Nesfatin-1 has a remarkably prolonged effect on food intake and body temperature. Time course of nesfatin-1s effects may be varied depending on the time applied. Many of the nesfatin-1/NUCB2 neurones are cold sensitive, and are positioned in key centres of thermoregulation. Nesfatin-1 regulates energy expenditure a far more potent way than it was recognised before making it a preferable candidate anti-obesity drug.


The International Journal of Neuropsychopharmacology | 2013

The absence of P2X7 receptors (P2rx7) on non-haematopoietic cells leads to selective alteration in mood-related behaviour with dysregulated gene expression and stress reactivity in mice

Cecília Csölle; Rómeó D. Andó; Ágnes Kittel; Flóra Gölöncsér; Mária Baranyi; Krisztina Soproni; Dóra Zelena; József Haller; Tamás Németh; Attila Mócsai; Beáta Sperlágh

The purpose of this study was to explore how genetic deletion and pharmacological antagonism of the P2X7 receptor (P2rx7) alter mood-related behaviour, gene expression and stress reactivity in the brain. The forced swim test (FST), tail suspension test (TST) and amphetamine-induced hyperlocomotion (AH) tests were used in wild-type (P2rx7+/+) and P2rx7-deficient (P2rx7−/−) mice. Biogenic amine levels were analysed in the amygdala and striatum, adrenocorticotropic hormone (ACTH) and corticosterone levels were measured in the plasma and pituitary after restraint stress. Chimeric mice were generated by bone marrow transplantation. A whole genome microarray analysis with real-time polymerase chain reaction validation was performed on the amygdala. In the absence of P2rx7s decreased behavioural despair in the FST, reduced immobility in the TST and attenuated amphetamine-induced hyperactivity were detected. Basal norepinephrine levels were elevated in the amygdala, whereas stress-induced ACTH and corticosterone responses were alleviated in P2rx7−/− mice. Sub-acute treatment with the selective P2rx7 antagonist, Brilliant Blue G, reproduced the effect of genetic deletion in the TST and AH test in P2rx7+/+ but not P2rx7−/− mice. No change in behavioural phenotype was observed in chimeras lacking the P2rx7 in their haematopoietic compartment. Whole genome microarray analysis indicated a widespread up- and down-regulation of genes crucial for synaptic function and neuroplasticity by genetic deletion. Here, we present evidence that the absence of P2rx7s on non-haematopoietic cells leads to a mood-stabilizing phenotype in several behavioural models and suggest a therapeutic potential of P2rx7 antagonists for the treatment of mood disorders.


Brain Research | 2005

Glutamate agonists activate the hypothalamic-pituitary-adrenal axis through hypothalamic paraventricular nucleus but not through vasopressinerg neurons.

Dóra Zelena; Zsuzsa Mergl; G. B. Makara

The hypothalamic-pituitary-adrenal (HPA) axis plays a crucial role in the stress processes. The nucleus paraventricularis hypothalami (PVN) with corticotropin-releasing hormone (CRH)-containing and arginine vasopressin (AVP)-containing neurons is the main hypothalamic component of the HPA. The glutamate, a well-known excitatory neurotransmitter, can activate the HPA inducing adrenocorticotropin hormone (ACTH) elevation. The aim of our study was to examine the involvement of PVN and especially AVP in glutamate-induced HPA activation using agonists of the N-methyl-d-aspartate (NMDA) and kainate receptors. Two approaches were used: in male Wistar rats the PVN was lesioned, and AVP-deficient homozygous Brattleboro rats were also studied. Blood samples were taken through indwelling cannula and ACTH, and corticosterone (CS) levels were measured by radioimmunoassay. The i.v. administered NMDA (5 mg/kg) or kainate (2.5 mg/kg) elevated the ACTH and CS levels already at 5 min in control (sham-operated Wistar or heterozygous Brattleboro) rats. The PVN lesion had no influence on basal ACTH and CS secretion but blocked the NMDA- or kainate-induced ACTH and CS elevations. The lack of AVP in the Brattleboro animals had no significant influence on the basal or glutamate-agonists-induced ACTH and CS elevations. Our results suggest that NMDA and kainate may activate the HPA axis at central (PVN) level and not at the level of pituitary or adrenal gland and that AVP has minor role in glutamate-HPA axis interaction. The time course of the ACTH secretion was different with NMDA or kainate. If we compared the two curves, the results were not coherent with the general view that NMDA activation requires previous kainate activation. Although it has to be mentioned that the conclusion which can be drawn is limited, the bioavailability of the compounds could be different as well.


Journal of Endocrinology | 2009

The stimuli-specific role of vasopressin in the hypothalamus-pituitary- adrenal axis response to stress

Dóra Zelena; Ágnes Domokos; Subodh Kumar Jain; Ryan Jankord; Ludmila Filaretova

Adaptation to a constantly changing environment is fundamental to every living organism. The hypothalamic-pituitary-adrenocortical (HPA) axis is a key component of the adaptation process. The present study tests the hypothesis that vasopressin (AVP) is required for the HPA response to acute stimuli. To accomplish this, naturally AVP-deficient Brattleboro rats were exposed to a wide range of stimuli and their HPA response was compared with heterozygous littermates. The circadian rhythmicity of plasma ACTH and corticosterone was not different between the two genotypes. The ACTH and corticosterone response to volume load, restraint or aggressive attack were decreased in AVP-deficient rats. The stress-induced increase in ACTH, but not corticosterone, was significantly impaired in AVP-deficient animals after novelty, elevated plus-maze, forced swim, hypoglycaemia, ulcerogenic cold immobilisation, lipopolysaccharide, hypertonic saline and egg white injection. The HPA response to social avoidance, ether inhalation and footshock was not different between the genotypes. In vitro, the hypophysis of AVP-deficient animals showed a reduction in stimulated ACTH production and their adrenal glands were hyporeactive to ACTH. A dissociation between the ACTH and corticosterone response was observed in several experiments and could not be explained by an earlier ACTH peak or enhanced adrenal sensitivity, suggesting the existence of paraadenohypophyseal neuroendocrine regulators. Loss of AVP affected the HPA response to a wide variety of stressors. Interestingly, the contribution of AVP to the HPA response was not specific for, nor limited to, a known stressor category. Thus, there is a context-specific requirement for AVP in stress-induced activation of the HPA axis.


Brain Research Bulletin | 2010

Stress-related endocrinological and psychopathological effects of short- and long-term 50 Hz electromagnetic field exposure in rats

Renáta Szemerszky; Dóra Zelena; István Barna; György Bárdos

It is believed that different electromagnetic fields do have beneficial and harmful biological effects. The aim of the present work was to study the long-term consequences of 50 Hz electromagnetic field (ELF-EMF) exposure with special focus on the development of chronic stress and stress-induced psychopathology. Adult male Sprague-Dawley rats were exposed to ELF-EMF (50 Hz, 0.5 mT) for 5 days, 8h daily (short) or for 4-6 weeks, 24h daily (long). Anxiety was studied in elevated plus maze test, whereas depression-like behavior of the long-treated group was examined in the forced swim test. Some days after behavioral examination, the animals were decapitated among resting conditions and organ weights, blood hormone levels as well as proopiomelanocortin mRNA level from the anterior lobe of the pituitary gland were measured. Both treatments were ineffective on somatic parameters, namely none of the changes characteristic to chronic stress (body weight reduction, thymus involution and adrenal gland hypertrophy) were present. An enhanced blood glucose level was found after prolonged ELF-EMF exposure (p=0.013). The hormonal stress reaction was similar in control and short-term exposed rats, but significant proopiomelanocortin elevation (p<0.000) and depressive-like behavior (enhanced floating time; p=0.006) were found following long-term ELF-EMF exposure. Taken together, long and continuous exposure to relatively high intensity electromagnetic field may count as a mild stress situation and could be a factor in the development of depressive state or metabolic disturbances. Although we should stress that the average intensity of the human exposure is normally much smaller than in the present experiment.


Psychoneuroendocrinology | 1999

α2-Adrenoreceptor subtypes regulate ACTH and β-endorphin secretions during stress in the rat

Dóra Zelena; Do Thanh Kiem; István Barna; G. B. Makara

The effect of different α2-adrenoreceptor subtype agonists and antagonists on adrenocorticotrop hormone (ACTH) and β-endorphin release induced by ether stress was examined. Ether inhalation-induced ACTH and β-endorphin increase was inhibited by ICV administration of 30 μg but not 1 and 10 μg clonidine (α2-adrenoreceptor agonist). ICV oxymetazoline (α2A-adrenoreceptor agonist; 1–10–30 μg) or the α1-agonist methoxamine (100 μg/rat) failed to inhibit the stress-induced rise. Pretreatment with the αl/α2B,C-antagonist prazosin (0.5 mg/kg, IP) prevented the effect of clonidine on the ether stress, while the α1/α2A-antagonist WB-4101 (0.5 mg/kg, IP) was unable to counteract the inhibitory effect of clonidine. Prazosin alone had no effect on the ether-induced plasma ACTH and β-endorphin elevation. These results suggest that noradrenaline in the central nervous system may inhibit the stress-induced hypothalamo-pituitary-axis and pituitary β-endorphin activation via α2B,C-adrenoceptor subtypes and prazosin may antagonize its effect on these receptors.

Collaboration


Dive into the Dóra Zelena's collaboration.

Top Co-Authors

Avatar

G. B. Makara

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

István Barna

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

József Haller

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ottó Pintér

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Anna Fodor

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zsuzsa Mergl

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

János Varga

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ágnes Domokos

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Barbara Klausz

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge