Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Doreen E. Brown is active.

Publication


Featured researches published by Doreen E. Brown.


Science | 1996

A Crosslinked Cofactor in Lysyl Oxidase: Redox Function for Amino Acid Side Chains

Sophie X. Wang; Minae Mure; Katalin F. Medzihradszky; Alma L. Burlingame; Doreen E. Brown; David M. Dooley; Alan Jay Smith; Herbert M. Kagan; Judith P. Klinman

A previously unknown redox cofactor has been identified in the active site of lysyl oxidase from the bovine aorta. Edman sequencing, mass spectrometry, ultraviolet-visible spectra, and resonance Raman studies showed that this cofactor is a quinone. Its structure is derived from the crosslinking of the ϵ-amino group of a peptidyl lysine with the modified side chain of a tyrosyl residue, and it has been designated lysine tyrosylquinone. This quinone appears to be the only example of a mammalian cofactor formed from the crosslinking of two amino acid side chains. This discovery expands the range of known quino-cofactor structures and has implications for the mechanism of their biogenesis.


Biochemistry | 2009

Structure and inhibition of human diamine oxidase

Aaron P. McGrath; K.M. Hilmer; Charles A. Collyer; Eric M. Shepard; B.O Elmore; Doreen E. Brown; David M. Dooley; J.M. Guss

Humans have three functioning genes that encode copper-containing amine oxidases. The product of the AOC1 gene is a so-called diamine oxidase (hDAO), named for its substrate preference for diamines, particularly histamine. hDAO has been cloned and expressed in insect cells and the structure of the native enzyme determined by X-ray crystallography to a resolution of 1.8 A. The homodimeric structure has the archetypal amine oxidase fold. Two active sites, one in each subunit, are characterized by the presence of a copper ion and a topaquinone residue formed by the post-translational modification of a tyrosine. Although hDAO shares 37.9% sequence identity with another human copper amine oxidase, semicarbazide sensitive amine oxidase or vascular adhesion protein-1, its substrate binding pocket and entry channel are distinctly different in accord with the different substrate specificities. The structures of two inhibitor complexes of hDAO, berenil and pentamidine, have been refined to resolutions of 2.1 and 2.2 A, respectively. They bind noncovalently in the active-site channel. The inhibitor binding suggests that an aspartic acid residue, conserved in all diamine oxidases but absent from other amine oxidases, is responsible for the diamine specificity by interacting with the second amino group of preferred diamine substrates.


Journal of the American Chemical Society | 2008

Inner-Sphere Mechanism for Molecular Oxygen Reduction Catalyzed by Copper Amine Oxidases

Arnab Mukherjee; Valeriy V. Smirnov; Michael P. Lanci; Doreen E. Brown; Eric M. Shepard; David M. Dooley; Justine P. Roth

Copper and topaquinone (TPQ) containing amine oxidases utilize O2 for the metabolism of biogenic amines while concomitantly generating H2O2 for use by the cell. The mechanism of O2 reduction has been the subject of long-standing debate due to the obscuring influence of a proton-coupled electron transfer between the tyrosine-derived TPQ and copper, a rapidly established equilibrium precluding assignment of the enzyme in its reactive form. Here, we show that substrate-reduced pea seedling amine oxidase (PSAO) exists predominantly in the Cu(I), TPQ semiquinone state. A new mechanistic proposal for O2 reduction is advanced on the basis of thermodynamic considerations together with kinetic studies (at varying pH, temperature, and viscosity), the identification of steady-state intermediates, and the analysis of competitive oxygen kinetic isotope effects, (18)O KIEs, [kcat/KM((16,16)O2)]/[kcat/KM((16,18)O2)]. The (18)O KIE = 1.0136 +/- 0.0013 at pH 7.2 is independent of temperature from 5 degrees C to 47 degrees C and insignificantly changed to 1.0122 +/- 0.0020 upon raising the pH to 9, thus indicating the absence of kinetic complexity. Using density functional methods, the effect is found to be precisely in the range expected for reversible O2 binding to Cu(I) to afford a superoxide, [Cu(II)(eta(1)-O2)(-I)](+), intermediate. Electron transfer from the TPQ semiquinone follows in the first irreversible step to form a peroxide, Cu(II)(eta(1)-O2)(-II), intermediate driving the reduction of O2. The similar (18)O KIEs reported for copper amine oxidases from other sources raise the possibility that all enzymes react by related inner-sphere mechanisms although additional experiments are needed to test this proposal.


Journal of Biological Inorganic Chemistry | 2007

π–π interaction between aromatic ring and copper-coordinated His81 imidazole regulates the blue copper active-site structure

Rehab F. Abdelhamid; Yuji Obara; Yoshiko Uchida; Takamitsu Kohzuma; David M. Dooley; Doreen E. Brown; Hiroshi Hori

Noncovalent weak interactions play important roles in biological systems. In particular, such interactions in the second coordination shell of metal ions in proteins may modulate the structure and reactivity of the metal ion site in functionally significant ways. Recently, π–π interactions between metal ion coordinated histidine imidazoles and aromatic amino acids have been recognized as potentially important contributors to the properties of metal ion sites. In this paper we demonstrate that in pseudoazurin (a blue copper protein) the π–π interaction between a coordinated histidine imidazole ring and the side chains of aromatic amino acids in the second coordination sphere, significantly influences the properties of the blue copper site. Electronic absorption and electron paramagnetic resonance spectra indicate that the blue copper electronic structure is perturbed, as is the redox potential, by the introduction of a second coordination shell π–π interaction. We suggest that the π–π interaction with the metal ion coordinated histidine imidazole ring modulates the electron delocalization in the active site, and that such interactions may be functionally important in refining the reactivity of blue copper sites.


Biochemistry | 2010

Spectroscopic Identification of Heme Axial Ligands in HtsA That Are Involved in Heme Acquisition by Streptococcus pyogenes

Yanchao Ran; Mengyao Liu; Hui Zhu; Tyler K. Nygaard; Doreen E. Brown; Marian Fabian; David M. Dooley; Benfang Lei

The heme-binding proteins Shp and HtsA of Streptococcus pyogenes are part of the heme acquisition machinery in which Shp directly transfers its heme to HtsA. Mutagenesis and spectroscopic analyses were performed to identify the heme axial ligands in HtsA and to characterize axial mutants of HtsA. Replacements of the M79 and H229 residues, not the other methionine and histidine residues, with alanine convert UV-vis spectra of HtsA with a low-spin, hexacoordinate heme iron into spectra of high-spin heme complexes. Ferrous M79A and H229A HtsA mutants possess magnetic circular dichroism (MCD) spectra that are similar with those of proteins with pentacoordinate heme iron. Ferric M79A HtsA displays UV-vis, MCD, and resonance Raman (RR) spectra that are typical of a hexacoordinate heme iron with histidine and water ligands. In contrast, ferric H229A HtsA has UV-vis, MCD, and RR spectra that represent a pentacoordinate heme iron complex with a methionine axial ligand. Imidazole readily forms a low-spin hexacoordinate adduct with M79A HtsA with a K(d) of 40.9 muM but not with H229A HtsA, and cyanide binds to M79A and H229A with K(d) of 0.5 and 19.1 microM, respectively. The ferrous mutants rapidly bind CO and form simple CO complexes. These results establish the H229 and M79 residues as the axial ligands of the HtsA heme iron, indicate that the M79 side is more accessible to the solvent than the H229 side of the bound heme in HtsA, and provide unique spectral features for a protein with pentacoordinate, methionine-ligated heme iron. These findings will facilitate elucidation of the molecular mechanism and structural basis for rapid and direct heme transfer from Shp to HtsA.


FEBS Letters | 1996

Identification of the quinone cofactor in a lysyl oxidase from Pichia pastoris

Joanne E. Dove; Alan Jay Smith; Jason A. Kuchar; Doreen E. Brown; David M. Dooley; Judith P. Klinman

A copper amine oxidase from Pichia pastoris is the only known non‐mammalian lysyl oxidase [Tur, S.S. and Lerch, K. (1988) FEBS Lett. 238, 74–76]. Recently, the cofactor in mammalian lysyl oxidase has been identified as a novel lysine tyrosylquinone moiety [Wang, S.X., Mure, M., Medzihradszky, K.F., Burlingame, A.L., Brown, D.E., Dooley, D.M., Smith, A.J., Kagan, H.M. and Klinman, J.P. (1996) Science 273, 1078–1082]. In order to identify the cofactor in P. pastoris lysyl oxidase, we have isolated the phenylhydrazone‐derivative of the active‐site peptide. This peptide has the active‐site sequence conserved among topa quinone containing amine oxidases. The resonance Raman spectra of the phenylhydrazone derivatives of the enzyme, active‐site peptide, and a topa quinone model compound are essentially identical. Collectively, these results establish that P. pastoris lysyl oxidase is a topa quinone enzyme.


Journal of Physical Chemistry B | 2013

Experimental and computational evidence of metal-O2 activation and rate-limiting proton-coupled electron transfer in a copper amine oxidase

Yi Liu; Arnab Mukherjee; Nadav Nahumi; Mehmet Ozbil; Doreen E. Brown; Alfredo M. Angeles-Boza; David M. Dooley; Rajeev Prabhakar; Justine P. Roth

The mechanism of O(2) reduction by copper amine oxidase from Arthrobacter globiformus (AGAO) is analyzed in relation to the cobalt-substituted protein. The enzyme utilizes a tyrosine-derived topaquinone cofactor to oxidize primary amines and reduce O(2) to H(2)O(2). Steady-state kinetics indicate that amine-reduced CuAGAO is reoxidized by O(2) >10(3) times faster than the CoAGAO analogue. Complementary spectroscopic studies reveal that the difference in the second order rate constant, k(cat)/K(M)(O(2)), arises from the more negative redox potential of Co(III/II) in relation to Cu(II/I). Indistinguishable competitive oxygen-18 kinetic isotope effects are observed for the two enzymes and modeled computationally using a calibrated density functional theory method. The results are consistent with a mechanism where an end-on (η(1))-metal bound superoxide is reduced to an η(1)-hydroperoxide in the rate-limiting step.


Journal of Biological Inorganic Chemistry | 1996

Intramolecular electron transfer in the oxidation of amines by methylamine oxidase from Arthrobacter P1

David M. Dooley; Doreen E. Brown

Abstract The intramolecular electron-transfer rate constant for the Cu(II)–topaNH2⇌ Cu(I)–topaSQ equilibrium in methylamine oxidase has been measured by temperature-jump relaxation techniques. At pH 7.0 the estimated kobs = 150±30 s–1 for both methylamine and benzylamine; assuming the equilibrium constant is ≈0.7–1 at pH 7.0 and 296 K, this would correspond to a forward electron-transfer rate constant kET≈ 60–75 s–1. Although substantially slower than the previously determined kET≈ 20 000 s–1 for pea seedling amine oxidase [5] steady-state kinetics measurements established that kET > kcat≈ 4–10 s–1. Thus the Cu(I)-semiquinone state is a viable intermediate in methylamine oxidase turnover.


Journal of Inorganic Biochemistry | 1994

Purification and active-site characterization of equine plasma amine oxidase.

Scott R. Carter; Michele A. McGuirl; Doreen E. Brown; David M. Dooley

An improved purification scheme for an amine oxidase from equine plasma (EPAO), a nonruminant source, is described and the proteins active-site is characterized. EPAO is dimeric and contains one Type-2 Cu(II) ion per monomer. The EPAO Cu(II) site is spectroscopically very similar to the Cu(II) sites in other amine oxidases. Unlike the extensively investigated nonruminant amine oxidase from porcine plasma, EPAO does not display half-of-the-sites reactivity; titrations with p-nitrophenylhydrazine and phenylhydrazine indicate two active cofactors per dimer. This cofactor is determined to be the same as that of other copper-containing amine oxidases, 6-hydroxydopa quinone (topa quinone). Upon anaerobic reduction with substrate at ambient temperature, the EPR spectrum of EPAO exhibits a sharp signal at g congruent to 2, attributable to the topa semiquinone. Equine plasma amine oxidase possesses novel in vitro substrate specificity; while other mammalian amine oxidases oxidize norepinephrine only slowly or not at all, EPAO displays significant activity toward this biogenic amine.


Journal of Biological Inorganic Chemistry | 1997

Cyanide as a copper-directed inhibitor of amine oxidases: implications for the mechanism of amine oxidation

Michele A. McGuirl; Doreen E. Brown; David M. Dooley

Abstract The interactions of five copper-containing amine oxidases with substrates and substrate analogues in the presence of the copper ligands cyanide, azide, chloride, and 1,10-phenanthroline have been investigated. While cyanide inhibits, to varying degrees, the reaction of phenylhydrazine with porcine kidney amine oxidase (PKAO), porcine plasma amine oxidase (PPAO), bovine plasma amine oxidase (BPAO), and pea seedling amine oxidase (PSAO), it enhances the reaction of Arthrobacter P1 amine oxidase (APAO) with this substrate analogue. This indicates that cyanide exerts an indirect effect on topa quinone (TPQ) reactivity via coordination to Cu(II) rather than through cyanohydrin formation at the TPQ organic cofactor. Moreover, cyanide binding to the mechanistically relevant TPQ• semiquinone form of substrate-reduced APAO and PSAO was not observable by EPR or resonance Raman spectroscopy. Hence, cyanide most likely inhibits enzyme reoxidation by binding to Cu(I) and trapping the Cu(I)-TPQ• form of amine oxidases, and thus preventing the reaction of O2 with Cu(I). In contrast, ligands such as azide, chloride, and 1,10-phenanthroline, which preferentially bind to Cu(II), inhibit by stabilizing the aminoquinol Cu(II)-TPQred redox state, which is in equilibrium with Cu(I)-TPQ•.

Collaboration


Dive into the Doreen E. Brown's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon E. V. Phillips

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge