Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Doreen Harcus is active.

Publication


Featured researches published by Doreen Harcus.


PLOS Genetics | 2005

A Human-Curated Annotation of the Candida albicans Genome

Burkhard R. Braun; Marco van het Hoog; Christophe d'Enfert; Mikhail Martchenko; Jan Dungan; Alan Kuo; Diane O. Inglis; M. Andrew Uhl; Hervé Hogues; Matthew Berriman; Michael C. Lorenz; Anastasia Levitin; Ursula Oberholzer; Catherine Bachewich; Doreen Harcus; Anne Marcil; Daniel Dignard; Tatiana Iouk; Rosa Zito; Lionel Frangeul; Fredj Tekaia; Kim Rutherford; Edwin Wang; Carol A. Munro; Steve Bates; Neil A. R. Gow; Lois L. Hoyer; Gerwald A. Köhler; Joachim Morschhäuser; George Newport

Recent sequencing and assembly of the genome for the fungal pathogen Candida albicans used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations) that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy. We also observed that, compared to other fungi, the protein-coding sequences in the C. albicans genome are especially rich in short sequence repeats. Finally, our improved annotation permitted a detailed analysis of several multigene families, and comparative genomic studies showed that C. albicans has a far greater catabolic range, encoding respiratory Complex 1, several novel oxidoreductases and ketone body degrading enzymes, malonyl-CoA and enoyl-CoA carriers, several novel amino acid degrading enzymes, a variety of secreted catabolic lipases and proteases, and numerous transporters to assimilate the resulting nutrients. The results of these efforts will ensure that the Candida research community has uniform and comprehensive genomic information for medical research as well as for future diagnostic and therapeutic applications.


Molecular Microbiology | 2008

Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans

Ekkehard Leberer; Doreen Harcus; Daniel Dignard; Lyne Johnson; Sophia Ushinsky; David Y. Thomas; Klaus Schröppel

The pathogenic fungus Candida albicans is capable of responding to a wide variety of environmental cues with a morphological transition from a budding yeast to a polarized filamentous form. We demonstrate that the Ras homologue of C. albicans, CaRas1p, is required for this morphological transition and thereby contributes to the development of pathogenicity. However, CaRas1p is not required for cellular viability. Deletion of both alleles of the CaRAS1 gene caused in vitro defects in morphological transition that were reversed by either supplementing the growth media with cAMP or overexpressing components of the filament‐inducing mitogen‐activated protein (MAP) kinase cascade. The induction of filament‐specific secreted aspartyl proteinases encoded by the SAP4–6 genes was blocked in the mutant cells. The defects in filament formation were also observed in situ after phagocytosis of C. albicans cells in a macrophage cell culture assay and, in vivo, after infection of kidneys in a mouse model for systemic candidiasis. In the macrophage assay, the mutant cells were less resistant to phagocytosis. Moreover, the defects in filament formation were associated with reduced virulence in the mouse model. These results indicate that, in response to environmental cues, CaRas1p is required for the regulation of both a MAP kinase signalling pathway and a cAMP signalling pathway. CaRas1p‐dependent activation of these pathways contributes to the pathogenicity of C. albicans cells through the induction of polarized morphogenesis. These findings elucidate a new medically relevant role for Ras in cellular morphogenesis and virulence in an important human infectious disease.


Current Biology | 1997

Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p

Ekkehard Leberer; Karl Ziegelbauer; Axel Schmidt; Doreen Harcus; Daniel Dignard; Josée Ash; Lyne Johnson; David Y. Thomas

BACKGROUND The pathogenic fungus Candida albicans is capable of a morphological transition from a unicellular budding yeast to a filamentous form. Extensive filamentous growth leads to the formation of mycelia displaying hyphae with branches and lateral buds. Hyphae have been observed to adhere to and invade host tissues more readily than the yeast form, suggesting that filamentous growth may contribute to the virulence of this major human pathogen. A molecular and genetic understanding of the potential role of morphological switching in the pathogenicity of C. albicans would be of significant benefit in view of the increasing incidence of candidiasis. RESULTS The CaCLA4 gene of C. albicans was cloned by functional complementation of the growth defect of cells of the budding yeast Saccharomyces cerevisiae deleted for the STE20 gene and the CLA4 gene. CaCLA4 encodes a member of the Ste20p family of serine/threonine protein kinases and is characterized by a pleckstrin homology domain and a Cdc42p-binding domain in its amino-terminal non-catalytic region. Deletion of both alleles of CaCLA4 in C. albicans caused defects in hyphal formation in vitro, in both synthetic liquid and solid media, and in vivo in a mouse model for systemic candidiasis. The gene deletions reduced colonization of the kidneys in infected mice and suppressed C. albicans virulence in the mouse model. CONCLUSIONS Our results demonstrate that the function of the CaCla4p protein kinase is essential for virulence and morphological switching of C. albicans in a mouse model. Thus, hyphal formation of C. albicans mediated by CaCla4p may contribute to the pathogenicity of this dimorphic fungus, suggesting that regulators of morphological switching may be useful targets for antifungal drugs.


Eukaryotic Cell | 2002

CDC42 Is Required for Polarized Growth in Human Pathogen Candida albicans

Sophia Ushinsky; Doreen Harcus; Josée Ash; Daniel Dignard; Anne Marcil; Joachim Morchhauser; David Y. Thomas; Malcolm Whiteway; Ekkehard Leberer

ABSTRACT Cdc42p is a member of the RAS superfamily of GTPases and plays an essential role in polarized growth in many eukaryotic cells. We cloned the Candida albicans CaCDC42 by functional complementation in Saccharomyces cerevisiae and analyzed its function in C. albicans. A double deletion of CaCDC42 was made in a C. albicans strain containing CaCDC42 under the control of the PCK1 promoter. When expression of the heterologous copy of CaCDC42 was repressed in this strain, the cells ceased proliferation. These arrested cells were large, round, and unbudded and contained predominantly two nuclei. The PCK1-mediated overexpression of wild-type CaCdc42p had no effect on cells. However, in cells overexpressing CaCdc42p containing the dominant-negative D118A substitution, proliferation was blocked and the arrested cells were large, round, unbudded, and multinucleated, similar to the phenotype of the cdc42 double-deletion strain. Cells overexpressing CaCdc42p containing the hyperactive G12V substitution also ceased proliferation in yeast growth medium; in this case the arrested cells were multinucleated and multibudded. An intact CAAX box is essential for the phenotypes associated with either CaCdc42pG12V or CaCdc42pD118A ectopic expression, suggesting that membrane attachment is involved in CaCdc42p function. In addition, the lethality caused by ectopic expression of CaCdc42pG12V was suppressed by deletion of CST20 but not by deletion of CaCLA4. CaCdc42p function was also examined under hypha-inducing conditions. Cdc42p depletion prior to hyphal induction trapped cells in a round, unbudded state, while depletion triggered at the same time as hyphal induction permitted the initiation of germ tubes that failed to be extended. Ectopic expression of either the G12V or D118A substitution protein modified hyphal formation in a CAAX box-dependent manner. Thus, CaCdc42p function appears important for polarized growth of both the yeast and hyphal forms of C. albicans.


Infection and Immunity | 2002

Candida albicans Killing by RAW 264.7 Mouse Macrophage Cells: Effects of Candida Genotype, Infection Ratios, and Gamma Interferon Treatment

Anne Marcil; Doreen Harcus; David Y. Thomas; Malcolm Whiteway

ABSTRACT Phagocytic cells such as neutrophils and macrophages are potential components of the immune defense that protects mammals against Candida albicans infection. We have tested the interaction between the mouse macrophage cell line RAW 264.7 and a variety of mutant strains of C. albicans. We used an end point dilution assay to monitor the killing of C. albicans at low multiplicities of infection (MOIs). Several mutants that show reduced virulence in mouse systemic-infection models show reduced colony formation in the presence of macrophage cells. To permit analysis of the macrophage-Candida interaction at higher MOIs, we introduced a luciferase reporter gene into wild-type and mutant Candida cells and used loss of the luminescence signal to quantify proliferation. This assay gave results similar to those for the end point dilution assay. Activation of the macrophages with mouse gamma interferon did not enhance anti-Candida activity. Continued coculture of the Candida and macrophage cells eventually led to death of the macrophages, but for the RAW 264.7 cell line this was not due to apoptotic pathways involving caspase-8 or -9 activation. In general Candida cells defective in the formation of hyphae were both less virulent in animal models and more sensitive to macrophage engulfment and growth inhibition. However the nonvirulent, hypha-defective cla4 mutant line was considerably more resistant to macrophage-mediated inhibition than the wild-type strain. Thus although mutants sensitive to engulfment are typically less virulent in systemic-infection models, sensitivity to phagocytic macrophage cells is not the unique determinant of C. albicans virulence.


Molecular Systems Biology | 2009

Chemogenomic profiling predicts antifungal synergies

Gregor Jansen; Anna Y. Lee; Elias Epp; Amélie Fredette; Jamie Surprenant; Doreen Harcus; Michelle S. Scott; Elaine Tan; Tamiko Nishimura; Malcolm Whiteway; Michael Hallett; David Y. Thomas

Chemotherapies, HIV infections, and treatments to block organ transplant rejection are creating a population of immunocompromised individuals at serious risk of systemic fungal infections. Since single‐agent therapies are susceptible to failure due to either inherent or acquired resistance, alternative therapeutic approaches such as multi‐agent therapies are needed. We have developed a bioinformatics‐driven approach that efficiently predicts compound synergy for such combinatorial therapies. The approach uses chemogenomic profiles in order to identify compound profiles that have a statistically significant degree of similarity to a fluconazole profile. The compounds identified were then experimentally verified to be synergistic with fluconazole and with each other, in both Saccharomyces cerevisiae and the fungal pathogen Candida albicans. Our method is therefore capable of accurately predicting compound synergy to aid the development of combinatorial antifungal therapies.


Molecular Genetics and Genomics | 1993

Cloning of Saccharomyces cerevisiae STE5 as a suppressor of a Ste20 protein kinase mutant : structural and functional similarity of Ste5 to Far1

Ekkehard Leberer; Daniel Dignard; Doreen Harcus; Linda Hougan; Malcolm Whiteway; David Y. Thomas

The β and γ subunits of the mating response G-protein in the yeast Saccharomyces cerevisiae have been shown to transmit the mating pheromone signal to downstream components of the pheromone response pathway. A protein kinase homologue encoded by the STE20 gene has recently been identified as a potential Gβγ, target. We have searched multicopy plasmid genomic DNA libraries for high gene dosage suppressors of the signal transduction defect of ste20 mutant cells. This screen identified the STE5 gene encoding an essential component of the pheromone signal transduction pathway. We provide genetic evidence for a functional interrelationship between the STE5 gene product and the Ste20 protein kinase. We have sequenced the STE5 gene, which encodes a predicted protein of 917 amino acids and is specifically transcribed in haploid cells. Transcription is slightly induced by treatment of cells with pheromone. Ste5 has homology with Fart, a yeast protein required for efficient mating and the pheromone-inducible inhibition of a G1 cyclin, Cln2. A STE5 multicopy plasmid is able to suppress the signal transduction defect of farl null mutant cells suggesting that Ste5, at elevated levels, is able functionally to replace Fart. The genetically predicted point of function of Ste5 within the pheromone signalling pathway suggests that Stc5 is involved in the regulation of a Gβγ-activated protein kinase cascade which links a G-protein coupled receptor to yeast homologues of mitogen-activated protein kinases.


PLOS Pathogens | 2010

Reverse Genetics in Candida albicans Predicts ARF Cycling Is Essential for Drug Resistance and Virulence

Elias Epp; Ghyslaine Vanier; Doreen Harcus; Anna Y. Lee; Gregor Jansen; Michael Hallett; Don C. Sheppard; David Y. Thomas; Carol A. Munro; Alaka Mullick; Malcolm Whiteway

Candida albicans, the major fungal pathogen of humans, causes life-threatening infections in immunocompromised individuals. Due to limited available therapy options, this can frequently lead to therapy failure and emergence of drug resistance. To improve current treatment strategies, we have combined comprehensive chemical-genomic screening in Saccharomyces cerevisiae and validation in C. albicans with the goal of identifying compounds that can couple with the fungistatic drug fluconazole to make it fungicidal. Among the genes identified in the yeast screen, we found that only AGE3, which codes for an ADP-ribosylation factor GTPase activating effector protein, abrogates fluconazole tolerance in C. albicans. The age3 mutant was more sensitive to other sterols and cell wall inhibitors, including caspofungin. The deletion of AGE3 in drug resistant clinical isolates and in constitutively active calcineurin signaling mutants restored fluconazole sensitivity. We confirmed chemically the AGE3-dependent drug sensitivity by showing a potent fungicidal synergy between fluconazole and brefeldin A (an inhibitor of the guanine nucleotide exchange factor for ADP ribosylation factors) in wild type C. albicans as well as in drug resistant clinical isolates. Addition of calcineurin inhibitors to the fluconazole/brefeldin A combination only initially improved pathogen killing. Brefeldin A synergized with different drugs in non-albicans Candida species as well as Aspergillus fumigatus. Microarray studies showed that core transcriptional responses to two different drug classes are not significantly altered in age3 mutants. The therapeutic potential of inhibiting ARF activities was demonstrated by in vivo studies that showed age3 mutants are avirulent in wild type mice, attenuated in virulence in immunocompromised mice and that fluconazole treatment was significantly more efficacious when ARF signaling was genetically compromised. This work describes a new, widely conserved, broad-spectrum mechanism involved in fungal drug resistance and virulence and offers a potential route for single or improved combination therapies.


Molecular Biology of the Cell | 2009

Binding the atypical RA domain of Ste50p to the unfolded Opy2p cytoplasmic tail is essential for the high-osmolarity glycerol pathway.

Irena Ekiel; Traian Sulea; Gregor Jansen; Maria Kowalik; Ovidiu Minailiuc; Jing Cheng; Doreen Harcus; Miroslaw Cygler; Malcolm Whiteway; Cunle Wu

Activation of the high-osmolarity glycerol (HOG) pathway for osmoregulation in the yeast Saccharomyces cerevisiae involves interaction of the adaptor Ste50p with the cytoplasmic tail of single-transmembrane protein Opy2p. We have determined the solution structure of the Ste50p-RA (Ras association) domain, and it shows an atypical RA fold lacking the beta1 and beta2 strands of the canonical motif. Although the core of the RA domain is fully functional in the pheromone response, an additional region is required for the HOG pathway activation. Two peptide motifs within the intrinsically disordered cytoplasmic tail of Opy2p defined by NMR spectroscopy physically interact with the Step50p-RA domain. These Opy2p-derived peptides bind overlapping regions of the Step50p-RA domain with similarly weak affinities, suggesting a multivalent interaction of these proteins as a crucial point of control of the HOG pathway. As well, overall selection of signaling pathways depends on functionally distinct regions of the Ste50p-RA domain, implicating this element in the control of global regulatory decisions.


Molecular Genetics and Genomics | 1996

Genetic interactions indicate a role for Mdg1p and the SH3 domain protein Bem1p in linking the G-protein mediated yeast pheromone signalling pathway to regulators of cell polarity.

Ekkehard Leberer; Janet Chenevert; Thomas Leeuw; Doreen Harcus; Herskowitz I; David Y. Thomas

The pheromone signal in the yeastSaccharomyces cerevisiae is transmitted by theβ andγ subunits of the mating response G-protein. TheSTE20 gene, encoding a protein kinase required for pheromone signal transduction, has recently been identified in a genetic screen for high-gene-dosage suppressors of a partly defective Gβ mutation. The same genetic screen identifiedBEM1, which encodes an SH3 domain protein required for polarized morphogenesis in response to pheromone, and a novel gene, designatedMDG1 (multicopy suppressor ofdefectiveG-protein). TheMDG1 gene was independently isolated in a search for multicopy suppressors of abem1 mutation. TheMDG1 gene encodes a predicted hydrophilic protein of 364 amino acids with a molecular weight of 41 kDa that has no homology with known proteins. A fusion of Mdg1p with the green fluorescent protein fromAequorea victoria localizes to the plasma membrane, suggesting that Mdg1p is an extrinsically bound membrane protein. Deletion ofMDG1 causes sterility in cells in which the wild-type Gβ has been replaced by partly defective Gβ derivatives but does not cause any other obvious phenotypes. The mating defect of cells deleted forSTE20 is partially suppressed by multiple copies ofBEM1 andCDC42, which encodes a small GTP-binding protein that binds to Ste20p and is necessary for the development of cell polarity. Elevated levels ofSTE20 andBEM1 are capable of suppressing a temperature-sensitive mutation inCDC42. This complex network of genetic interactions points to a role for Bem1p and Mdg1p in G-protein mediated signal transduction and indicates a functional linkage between components of the pheromone signalling pathway and regulators of cell polarity during yeast mating.

Collaboration


Dive into the Doreen Harcus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Y. Thomas

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Daniel Dignard

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Marcil

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus Schröppel

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

André Nantel

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge