Doreen LePage
Biogen Idec
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Doreen LePage.
Journal of Clinical Investigation | 2003
Heather B. Adkins; Caterina Bianco; Susan Schiffer; Paul Rayhorn; Mohammad Zafari; Anne E. Cheung; Olivia Orozco; Dian L. Olson; Antonella De Luca; Ling Ling Chen; Konrad Miatkowski; Christopher D. Benjamin; Nicola Normanno; Kevin Williams; Matthew Jarpe; Doreen LePage; David S. Salomon; Michele Sanicola
Cripto, a cell surface-associated protein belonging to the EGF-CFC family of growth factor-like molecules, is overexpressed in many human solid tumors, including 70-80% of breast and colon tumors, yet how it promotes cell transformation is unclear. During embryogenesis, Cripto complexes with Alk4 via its unique cysteine-rich CFC domain to facilitate signaling by the TGF-beta ligand Nodal. We report, for the first time to our knowledge, that Cripto can directly bind to another TGF-beta ligand, Activin B, and that Cripto overexpression blocks Activin B growth inhibition of breast cancer cells. This result suggests a novel mechanism for antagonizing Activin signaling that could promote tumorigenesis by deregulating growth homeostasis. We show that an anti-CFC domain antibody, A8.G3.5, both disrupts Cripto-Nodal signaling and reverses Cripto blockade of Activin B-induced growth suppression by blocking Criptos association with either Alk4 or Activin B. In two xenograft models, testicular and colon cancer, A8.G3.5 inhibited tumor cell growth by up to 70%. Both Nodal and Activin B expression was found in the xenograft tumor, suggesting that either ligand could be promoting tumorigenesis. These data validate that functional blockade of Cripto inhibits tumor growth and highlight antibodies that block Cripto signaling mediated through its CFC domain as an important class of antibodies for further therapeutic development.
Cancer Research | 2008
Louise A. Koopman Van Aarsen; Diane R. Leone; Steffan Ho; Brian M. Dolinski; Patricia McCoon; Doreen LePage; Rebecca Kelly; Glenna Heaney; Paul Rayhorn; Carl Reid; Kenneth J. Simon; Gerald S. Horan; Nianjun Tao; Humphrey Gardner; Marilyn Skelly; Allen M. Gown; Gareth J. Thomas; Paul H. Weinreb; Stephen E. Fawell; Shelia M. Violette
The alpha(v)beta(6) integrin is up-regulated on epithelial malignancies and has been implicated in various aspects of cancer progression. Immunohistochemical analysis of alpha(v)beta(6) expression in 10 human tumor types showed increased expression relative to normal tissues. Squamous carcinomas of the cervix, skin, esophagus, and head and neck exhibited the highest frequency of expression, with positive immunostaining in 92% (n = 46), 84% (n = 49), 68% (n = 56), and 64% (n = 100) of cases, respectively. We studied the role of alpha(v)beta(6) in Detroit 562 human pharyngeal carcinoma cells in vitro and in vivo. Prominent alpha(v)beta(6) expression was detected on tumor xenografts at the tumor-stroma interface resembling the expression on human head and neck carcinomas. Nonetheless, coculturing cells in vitro with matrix proteins did not up-regulate alpha(v)beta(6) expression. Detroit 562 cells showed alpha(v)beta(6)-dependent adhesion and activation of transforming growth factor-beta (TGF-beta) that was inhibited >90% with an alpha(v)beta(6) blocking antibody, 6.3G9. Although both recombinant soluble TGF-beta receptor type-II (rsTGF-beta RII-Fc) and 6.3G9 inhibited TGF-beta-mediated Smad2/3 phosphorylation in vitro, there was no effect on proliferation. Conversely, in vivo, 6.3G9 and rsTGF-beta RII-Fc inhibited xenograft tumor growth by 50% (n = 10, P < 0.05) and >90% (n = 10, P < 0.001), respectively, suggesting a role for the microenvironment in this response. However, stromal collagen and smooth muscle actin content in xenograft sections were unchanged with treatments. Although further studies are required to consolidate in vitro and in vivo results and define the mechanisms of tumor inhibition by alpha(v)beta(6) antibodies, our findings support a role for alpha(v)beta(6) in human cancer and underscore the therapeutic potential of function blocking alpha(v)beta(6) antibodies.
Cancer Research | 2006
Matvey E. Lukashev; Doreen LePage; Cheryl Wilson; Veronique Bailly; Ellen Garber; Alex Lukashin; Apinya Ngam-ek; Weike Zeng; Norman E. Allaire; Steve Perrin; Xianghong Xu; Kendall Szeliga; Kathleen Wortham; Rebecca Kelly; Cindy Bottiglio; Jane Ding; Linda Griffith; Glenna Heaney; Erika Lorraine Silverio; William J. Yang; Matt Jarpe; Stephen Fawell; Mitchell Reff; Amie N. Carmillo; Konrad Miatkowski; Joseph Amatucci; Thomas Crowell; Holly Prentice; Werner Meier; Shelia M. Violette
The lymphotoxin-beta receptor (LT beta R) is a tumor necrosis factor receptor family member critical for the development and maintenance of various lymphoid microenvironments. Herein, we show that agonistic anti-LT beta R monoclonal antibody (mAb) CBE11 inhibited tumor growth in xenograft models and potentiated tumor responses to chemotherapeutic agents. In a syngeneic colon carcinoma tumor model, treatment of the tumor-bearing mice with an agonistic antibody against murine LT beta R caused increased lymphocyte infiltration and necrosis of the tumor. A pattern of differential gene expression predictive of cellular and xenograft response to LT beta R activation was identified in a panel of colon carcinoma cell lines and when applied to a panel of clinical colorectal tumor samples indicated 35% likelihood a tumor response to CBE11. Consistent with this estimate, CBE11 decreased tumor size and/or improved long-term animal survival with two of six independent orthotopic xenografts prepared from surgical colorectal carcinoma samples. Targeting of LT beta R with agonistic mAbs offers a novel approach to the treatment of colorectal and potentially other types of cancers.
Journal of Pharmacology and Experimental Therapeutics | 2004
Robert Blake Pepinsky; Wen-Cherng Lee; Mark Cornebise; Alan Gill; K. Wortham; Ling Ling Chen; D. R. Leone; K. Giza; B. M. Dolinski; S. Perper; C. Nickerson-Nutter; Doreen LePage; Abhijit Chakraborty; Eric T. Whalley; R. C. Petter; Steven P. Adams; Roy R. Lobb; Daniel Scott
Integrin α4β1 plays an important role in inflammatory processes by regulating the migration of leukocytes into inflamed tissues. Previously, we identified BIO5192 [2(S)-{[1-(3,5-dichloro-benzenesulfonyl)-pyrrolidine-2(S)-carbonyl]-amino}-4-[4-methyl-2(S)-(methyl-{2-[4-(3-o-tolyl-ureido)-phenyl]-acetyl}-amino)-pentanoylamino]-butyric acid], a highly selective and potent (KD of 9 pM) small molecule inhibitor of α4β1. Although BIO5192 is efficacious in various animal models of inflammatory disease, high doses and daily treatment of the compound are needed to achieve a therapeutic effect because of its relatively short serum half-life. To address this issue, polyethylene glycol modification (PEGylation) was used as an approach to improve systemic exposure. BIO5192 was PEGylated by a targeted approach in which derivatizable amino groups were incorporated into the molecule. Two sites were identified that could be modified, and from these, five PEGylated compounds were synthesized and characterized. One compound, 2a-PEG (KD of 19 pM), was selected for in vivo studies. The pharmacokinetic and pharmacodynamic properties of 2a-PEG were dramatically improved relative to the unmodified compound. The PEGylated compound was efficacious in a rat model of experimental autoimmune encephalomyelitis at a 30-fold lower molar dose than the parent compound and required only a once-a-week dosing regimen compared with a daily treatment for BIO5192. Compound 2a-PEG was highly selective for α4β1. These studies demonstrate the feasibility of PEGylation of α4β1-targeted small molecules with retention of activity in vitro and in vivo. 2a-PEG, and related compounds, will be valuable reagents for assessing α4β1 biology and may provide a new therapeutic approach to treatment of human inflammatory diseases.
Archive | 2008
Leona E. Ling; Juswinder Singh; Claudio Chuaqui; P. Ann Boriack-Sjodin; Michael J. Corbley; Doreen LePage; Erika Lorraine Silverio; Lihong Sun; James L. Papadatos; Feng Shan; Timothy Pontz; H.-Kam Cheung; Xiamei Zhang; Robert M. Arduini; Jonathan N. Mead; Miki N. Newman; Scott Bowes; Serene Josiah; Wen-Cherng Lee
The multifunctional cytokine, TGF-β, is often overexpressed in human tumors and in preclinical studies has been demonstrated to have autocrine and paracrine protumor activities including immune evasion, invasiveness, epithelial to mesenchymal transition, angiogenesis, tumor-stromal interactions, survival, induction of tumor interstitial pressure, and decreased drug penetration. These findings suggest that antagonism of the TGF-β pathway may be of benefit in the treatment of cancer. One attractive target, the type I TGF-β receptor (ALK5) has an intracellular serine/threonine kinase, which is required for TGF-β signaling and is amenable to inhibition by small molecule, ATP binding site-targeted kinase inhibitors.
Journal of Pharmacology and Experimental Therapeutics | 2001
R. Blake Pepinsky; Doreen LePage; Alan Gill; Abhijit Chakraborty; Sujata Vaidyanathan; Marie Green; Darren P. Baker; Eric T. Whalley; Paula S. Hochman; Pauline Martin
Cancer Research | 1987
Thomas W. Griffin; Carol L. Richardson; L. L. Houston; Doreen LePage; Arthur E. Bogden; Vic Raso
Journal of Pharmacology and Experimental Therapeutics | 2003
D. R. Leone; K. Giza; Alan Gill; B. M. Dolinski; W. Yang; S. Perper; Daniel Scott; Wen-Cherng Lee; Mark Cornebise; K. Wortham; C. Nickerson-Nutter; Ling Ling Chen; Doreen LePage; J. C. Spell; Eric T. Whalley; R. C. Petter; Steven P. Adams; Roy R. Lobb; Robert Blake Pepinsky
Journal of Pharmaceutical Sciences | 2002
R. Blake Pepinsky; Renee Shapiro; Shaoshan Wang; Abhijit Chakraborty; Alan Gill; Doreen LePage; Dingyi Wen; Paul Rayhorn; Gerald S. Horan; Frederick R. Taylor; Ellen Garber; Alphonse Galdes; Thomas Engber
Archive | 2003
Doreen LePage; Alan Gill