Dorian Hanaor
Technical University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dorian Hanaor.
Advances in Applied Ceramics | 2012
Dorian Hanaor; Ilkay Chironi; Inna Karatchevtseva; Gerry Triani; C. C. Sorrell
Abstract To investigate the excess hydrolysis of titanium alkoxides, TiO2 powders were fabricated from titanium tetraisopropoxide using 6∶1 and 100∶1 H2O/Ti (r) ratios. The powders were dried and fired at a range of temperatures (⩽800°C). Hydroxylation and organic content in powders were characterised using attenuated total reflectance Fourier transform infrared spectroscopy (FTIR), laser Raman microspectroscopy and elemental microanalysis; surface area and pore size distribution were evaluated using N2 gas adsorption; phase composition was analysed using X-ray diffraction (XRD) and laser Raman microspectroscopy; and crystallite size was evaluated by XRD, TEM and SEM. Results showed near complete hydrolysis in a predominantly aqueous medium (r = 100), resulting in precipitated crystalline powders exhibiting brookite and anatase, which begin to transform to rutile below 500°C. The powders precipitated in a predominantly organic medium (r = 6) underwent partial hydrolysis, were highly porous and exhibited an amorphous structure, with the crystallisation of anatase occurring at ∼300°C and the transformation to rutile beginning at 500–600°C.
Advanced Engineering Materials | 2014
Dorian Hanaor; C. C. Sorrell
Using an organometallic precursor, TiO2 coatings were fabricated on surfaces of quartz, zircon, and rutile sands. X-ray diffraction, X-ray fluorescence, UV–vis spectroscopy, and surface area measurement were used to characterize support materials. The phase composition and morphology of the coatings were characterized by laser Raman microspectroscopy and scanning electron microscopy, respectively. A packed bed reactor was used to study the inactivation of Escherichia coli in recirculating water by the supported photocatalysts. It was found that the sand grains were well coated with a homogenous layer of TiO2 and coatings were well adhered, exhibiting a mixed anatase-rutile composition after firing at 850 °C. Photocatalytic activity was highest in coatings applied to quartz sand, although sterilization of the recirculating water was not achieved with any of the materials investigated. The advantages of quartz as a TiO2 photocatalyst support material are likely a result of this materials higher purity and optical transmittance. Potential enhancement through Si doping cannot be ruled out.
Langmuir | 2014
Dorian Hanaor; Maliheh Ghadiri; Wojciech Chrzanowski; Yixiang Gan
By means of the in situ electrokinetic assessment of aqueous particles in conjunction with the addition of anionic adsorbates, we develop and examine a new approach to the scalable characterization of the specific accessible surface area of particles in water. For alumina powders of differing morphology in mildly acidic aqueous suspensions, the effective surface charge was modified by carboxylate anion adsorption through the incremental addition of oxalic and citric acids. The observed zeta potential variation as a function of the proportional reagent additive was found to exhibit inverse hyperbolic sine-type behavior predicted to arise from monolayer adsorption following the Grahame-Langmuir model. Through parameter optimization by inverse problem solving, the zeta potential shift with relative adsorbate addition revealed a nearly linear correlation of a defined surface-area-dependent parameter with the conventionally measured surface area values of the powders, demonstrating that the proposed analytical framework is applicable for the in situ surface area characterization of aqueous particulate matter. The investigated methods have advantages over some conventional surface analysis techniques owing to their direct applicability in aqueous environments at ambient temperature and the ability to modify analysis scales by variation of the adsorption cross section.
Geotechnique Letters | 2013
Dorian Hanaor; Yixiang Gan; Itai Einav
The evolution of fractal surface structures with flattening of asperities was investigated using isotropically roughened aluminium surfaces loaded in compression. It was found that asperity amplitude, mean roughness and fractal dimension decrease through increased compressive stress and number of loading events. Of the samples tested, surfaces subjected to an increased number of loading events exhibited the most significant surface deformation and were observed to exhibit higher levels of static friction at an interface with a single-crystal flat quartz substrate. This suggests that the frequency of grain reorganisation events in geomaterials plays an important role in the development of intergranular friction. Fractal surfaces were numerically modelled using Weierstrass– Mandelbrot-based functions. From the study of frictional interactions with rigid flat opposing surfaces it was apparent that the effect of surface fractal dimension is more significant with increasing dominance of adhesive mechanisms.
Applied Surface Science | 2016
M. Hussein N. Assadi; Dorian Hanaor
Abstract Copper dopants are varyingly reported to enhance photocatalytic activity at titanium dioxide surfaces through uncertain mechanisms. In order to interpret how copper doping might alter the performance of titanium dioxide photocatalysts in aqueous media we applied density functional theory methods to simulate surface units of doped anatase (101) planes. By including van der Waals interactions, we consider the energetics of adsorbed water at anatase surfaces in pristine and copper doped systems. Simulation results indicate that copper dopant at anatase (101) surfaces is most stable in a 2+ oxidation state and a disperse configuration, suggesting the formation of secondary CuO phases is energetically unfavourable. In agreement with previous reports, water at the studied surface is predicted to exhibit molecular adsorption with this tendency slightly enhanced by copper. Results imply that the enhancement of photoactivity at anatase surfaces through Cu doping is more likely to arise from electronic interactions mediated by charge transfer and inter-bandgap states increasing photoexcitation and extending surface-hole lifetimes rather than through the increased density of adsorbed hydroxyl groups.
Fusion Science and Technology | 2014
Yixiang Gan; Francisco Andrés León Hernández; Dorian Hanaor; Ratna Kumar Annabattula; Marc Kamlah; P. Pereslavtsev
Abstract Due to neutron irradiation, solid breeder blankets are subjected to complex thermo-mechanical conditions. Within one breeder unit, the ceramic breeder bed is composed of spherical-shaped lithium orthosilicate pebbles, and as a type of granular material, it exhibits strong coupling between temperature and stress fields. In this paper, we study these thermo-mechanical problems by developing a thermal discrete element method (Thermal-DEM). This proposed simulation tool models each individual ceramic pebble as one element and considers grain-scale thermo-mechanical interactions between elements. A small section of solid breeder pebble bed in a helium-cooled pebble bed (HCPB) is modelled using thousands of individual pebbles and subjected to volumetric heating profiles calculated from neutronics under ITER-relevant conditions. We consider heat transfer at the grain scale between pebbles through both solid-to-solid contacts and the interstitial gas phase, and we calculate stresses arising from thermal expansion of pebbles. The overall effective conductivity of the bed depends on the resulting compressive stress state during the neutronic heating. The Thermal-DEM method proposed in this study provides access to the grain-scale information, which is beneficial for HCPB design and breeder material optimization, and a better understanding of overall thermo-mechanical responses of the breeder units under fusion-relevant conditions.
Journal of Applied Physics | 2013
M. Hussein N. Assadi; Dorian Hanaor
Density functional theory calculations were employed to model the electronic structure and the magnetic interactions in copper doped anatase and rutile titanium dioxide in order to shed light on the potential of these systems as magnetic oxides using different density functional schemes. In both polymorphs, copper dopant was found to be most stable in substitutional lattice positions. Ferromagnetism is predicted to be stable well above room temperature with long range interactions prevailing in the anatase phase while the rutile phase exhibits only short range superexchange interaction among nearest-neighbour Cu ions. Additionally, energetic evaluation of dopants in scattered and compact configurations reveals a dopant clustering tendency in anatase TiO2.
Langmuir | 2016
Mingchao Liu; Jian Wu; Yixiang Gan; Dorian Hanaor; C. Chen
The capillary penetration of fluids in thin porous layers is of fundamental interest in nature and various industrial applications. When capillary flows occur in porous media, the extent of penetration is known to increase with the square root of time following the Lucas-Washburn law. In practice, volatile liquid evaporates at the surface of porous media, which restricts penetration to a limited region. In this work, on the basis of Darcys law and mass conservation, a general theoretical model is developed for the evaporation-limited radial capillary penetration in porous media. The presented model predicts that evaporation decreases the rate of fluid penetration and limits it to a critical radius. Furthermore, we construct a unified phase diagram that describes the limited penetration in an annular porous medium, in which the boundaries of outward and inward liquid are predicted quantitatively. It is expected that the proposed theoretical model will advance the understanding of penetration dynamics in porous media and facilitate the design of engineered porous architectures.
Materials Science and Engineering A-structural Materials Properties Microstructure and Processing | 2016
Dorian Hanaor; L. Hu; Wen Hao Kan; Gwénaëlle Proust; M. Foley; I. Karaman; Miladin Radovic
Composite materials comprising a porous Ti2AlC matrix and Al 6061 alloy were fabricated by a current-activated pressure assisted melt infiltration process. Coarse, medium and fine meso-structures were prepared with Al alloy filled pores of differing sizes. Materials were subjected to uniaxial compressive loading up to stresses of 668 MPa, leading to the failure of specimens through crack propagation in both phases. As-fabricated and post-failure specimens were analysed by X-ray microscopy and electron microscopy. Quasi-static mechanical testing results revealed that compressive strength was the highest in the fine structured composite materials. While the coarse structured specimens exhibited a compressive strength of 80% relative to this. Reconstructed micro-scale X-ray tomography data revealed different crack propagation mechanisms. Large planar shear cracks propagated throughout the fine structured materials while the coarser specimens exhibited networks of branching cracks propagating preferentially along Al alloy-Ti2AlC phase interfaces and through shrinkage pores in the Al alloy phase. Results suggest that control of porosity, compensation for Al alloy shrinkage and enhancement of the Al alloy-Ti2AlC phase interfaces are key considerations in the design of high performance metal/Ti2AlC phase composites.
Heliyon | 2017
Dorian Hanaor; E.A. Flores Johnson; Shengzhe Wang; S. Quach; K.N. Dela-Torre; Yixiang Gan; Luming Shen
The crumpling of precursor materials to form dense three dimensional geometries offers an attractive route towards the utilisation of minor-value waste materials. Crumple-forming results in a mesostructured system in which mechanical properties of the material are governed by complex cross-scale deformation mechanisms. Here we investigate the physical and mechanical properties of dense compacted structures fabricated by the confined uniaxial compression of a cellulose tissue to yield crumpled mesostructuring. A total of 25 specimens of various densities were tested under compression. Crumple formed specimens exhibited densities in the range 0.8–1.3 g cm−3, and showed high strength to weight characteristics, achieving ultimate compressive strength values of up to 200 MPa under both quasi-static and high strain rate loading conditions and deformation energy that compares well to engineering materials of similar density. The materials fabricated in this work and their mechanical attributes demonstrate the potential of crumple-forming approaches in the fabrication of novel energy-absorbing materials from low-cost precursors such as recycled paper. Stiffness and toughness of the materials exhibit density dependence suggesting this forming technique further allows controllable impact energy dissipation rates in dynamic applications.