Dorie Smith
New York State Department of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dorie Smith.
Cell | 1998
Benoit Cousineau; Dorie Smith; Stacey Lawrence-Cavanagh; John E. Mueller; Jian Yang; David A. Mills; Dawn A. Manias; Gary M. Dunny; Alan M. Lambowitz; Marlene Belfort
The mobile group II intron of Lactococcus lactis, Ll.LtrB, provides the opportunity to analyze the homing pathway in genetically tractable bacterial systems. Here, we show that Ll.LtrB mobility occurs by an RNA-based retrohoming mechanism in both Escherichia coli and L. lactis. Surprisingly, retrohoming occurs efficiently in the absence of RecA function, with a relaxed requirement for flanking exon homology and without coconversion of exon markers. These results lead to a model for bacterial retrohoming in which the intron integrates into recipient DNA by complete reverse splicing and serves as the template for cDNA synthesis. The retrohoming reaction is completed in unprecedented fashion by a DNA repair event that is independent of homologous recombination between the alleles. Thus, Ll.LtrB has many features of retrotransposons, with practical and evolutionary implications.
Nature | 2000
Benoit Cousineau; Stacey Lawrence; Dorie Smith; Marlene Belfort
Self-splicing group II introns may be the evolutionary progenitors of eukaryotic spliceosomal introns, but the route by which they invade new chromosomal sites is unknown. To address the mechanism by which group II introns are disseminated, we have studied the bacterial Ll.LtrB intron from Lactococcus lactis. The protein product of this intron, LtrA, possesses maturase, reverse transcriptase and endonuclease enzymatic activities. Together with the intron, LtrA forms a ribonucleoprotein (RNP) complex which mediates a process known as retrohoming. In retrohoming, the intron reverse splices into a cognate intronless DNA site. Integration of a DNA copy of the intron is recombinase independent but requires all three activities of LtrA. Here we report the first experimental demonstration of a group II intron invading ectopic chromosomal sites, which occurs by a distinct retrotransposition mechanism. This retrotransposition process is endonuclease-independent and recombinase-dependent, and is likely to involve reverse splicing of the intron RNA into cellular RNA targets. These retrotranspositions suggest a mechanism by which splicesomal introns may have become widely dispersed.
Molecular Microbiology | 2008
Kenji Ichiyanagi; Arthur Beauregard; Stacey Lawrence; Dorie Smith; Benoit Cousineau; Marlene Belfort
Catalytic group II introns are mobile retroelements that invade cognate intronless genes via retrohoming, where the introns reverse splice into double‐stranded DNA (dsDNA) targets. They can also retrotranspose to ectopic sites at low frequencies. Whereas our previous studies with a bacterial intron, Ll.LtrB, supported frequent use of RNA targets during retrotransposition, recent experiments with a retrotransposition indicator gene indicate that DNA, rather than RNA, is a prominent target, with both dsDNA and single‐stranded DNA (ssDNA) as possibilities. Thus retrotransposition occurs in both transcriptional sense and antisense orientations of target genes, and is largely independent of homologous DNA recombination and of the endonuclease function of the intron‐encoded protein, LtrA. Models based on both dsDNA and ssDNA targeting are presented. Interestingly, retrotransposition is biased toward the template for lagging‐strand DNA synthesis, which suggests the possibility of the replication folk as a source of ssDNA. Consistent with some use of ssDNA targets, many retrotransposition sites lack nucleotides critical for the unwinding of target duplex DNA. Moreover, in vitro the intron reverse spliced into ssDNA more efficiently than dsDNA substrates for some of the retrotransposition sites. Furthermore, many bacterial group II introns reside on the lagging‐strand template, hinting at a role for DNA replication in intron dispersal in nature.
Journal of Bacteriology | 2004
Richard A. Lease; Dorie Smith; Kathleen A. McDonough; Marlene Belfort
DsrA RNA is a small (87-nucleotide) regulatory RNA of Escherichia coli that acts by RNA-RNA interactions to control translation and turnover of specific mRNAs. Two targets of DsrA regulation are RpoS, the stationary-phase and stress response sigma factor (sigmas), and H-NS, a histone-like nucleoid protein and global transcription repressor. Genes regulated globally by RpoS and H-NS include stress response proteins and virulence factors for pathogenic E. coli. Here, by using transcription profiling via DNA arrays, we have identified genes induced by DsrA. Steady-state levels of mRNAs from many genes increased with DsrA overproduction, including multiple acid resistance genes of E. coli. Quantitative primer extension analysis verified the induction of individual acid resistance genes in the hdeAB, gadAX, and gadBC operons. E. coli K-12 strains, as well as pathogenic E. coli O157:H7, exhibited compromised acid resistance in dsrA mutants. Conversely, overproduction of DsrA from a plasmid rendered the acid-sensitive dsrA mutant extremely acid resistant. Thus, DsrA RNA plays a regulatory role in acid resistance. Whether DsrA targets acid resistance genes directly by base pairing or indirectly via perturbation of RpoS and/or H-NS is not known, but in either event, our results suggest that DsrA RNA may enhance the virulence of pathogenic E. coli.
Nucleic Acids Research | 2010
Jeanne M. DiChiara; Lydia M. Contreras-Martinez; Jonathan Livny; Dorie Smith; Kathleen A. McDonough; Marlene Belfort
Tuberculosis (TB) is a major global health problem, infecting millions of people each year. The causative agent of TB, Mycobacterium tuberculosis, is one of the world’s most ancient and successful pathogens. However, until recently, no work on small regulatory RNAs had been performed in this organism. Regulatory RNAs are found in all three domains of life, and have already been shown to regulate virulence in well-known pathogens, such as Staphylococcus aureus and Vibrio cholera. Here we report the discovery of 34 novel small RNAs (sRNAs) in the TB-complex M. bovis BCG, using a combination of experimental and computational approaches. Putative homologues of many of these sRNAs were also identified in M. tuberculosis and/or M. smegmatis. Those sRNAs that are also expressed in the non-pathogenic M. smegmatis could be functioning to regulate conserved cellular functions. In contrast, those sRNAs identified specifically in M. tuberculosis could be functioning in mediation of virulence, thus rendering them potential targets for novel antimycobacterials. Various features and regulatory aspects of some of these sRNAs are discussed.
Molecular Cell | 2009
Colin J. Coros; Carol Lyn Piazza; Venkata R. Chalamcharla; Dorie Smith; Marlene Belfort
Group II introns are hypothesized to share common ancestry with both nuclear spliceosomal introns and retrotransposons, which collectively occupy the majority of genome space in higher eukaryotes. These phylogenetically diverse introns are mobile retroelements that move through an RNA intermediate. Disruption of Escherichia coli genes encoding enzymes that catalyze synthesis of global regulators cAMP and ppGpp inhibits group II intron retromobility. These small molecules program genetic transitions between nutrient excess and starvation. Accordingly, we demonstrated that glucose depletion of wild-type cells and cAMP supplementation of mutants stimulated retromobility. Likewise, amino acid starvation, which induces the alarmone ppGpp, activated retromobility. In both cases, retrotransposition to ectopic sites was favored over retrohoming. Interestingly, these stimulatory effects are mediated at the level of the DNA target, rather than of expression of the retroelement. Thereby, during metabolic stress, cAMP and ppGpp control group II intron movement in concert with the cells global genetic circuitry, stimulating genetic diversity.
Current Biology | 2011
Justin B. Robbins; Dorie Smith; Marlene Belfort
It is well understood how mobile introns home to allelic sites, but how they are stimulated to transpose to ectopic locations on an evolutionary timescale is unclear. Here we show that a group I intron can move to degenerate sites under oxidizing conditions. The phage T4 td intron endonuclease, I-TevI, is responsible for this infidelity. We demonstrate that I-TevI, which promotes mobility and is subject to autorepression and translational control, is also regulated posttranslationally by a redox mechanism. Redox regulation is exercised by a zinc finger (ZF) in a linker that connects the catalytic domain of I-TevI to the DNA binding domain. Four cysteines coordinate Zn(2+) in the ZF, which ensures that I-TevI cleaves its DNA substrate at a fixed distance, 23-25 nucleotides upstream of the intron insertion site. We show that the fidelity of I-TevI cleavage is controlled by redox-responsive Zn(2+) cycling. When the ZF is mutated, or after exposure of the wild-type I-TevI to H(2)O(2), intron homing to degenerate sites is increased, likely because of indiscriminate DNA cleavage. These results suggest a mechanism for rapid intron dispersal, joining recent descriptions of the activation of biomolecular processes by oxidative stress through cysteine chemistry.
Nucleic Acids Research | 2014
Kushol Gupta; Lydia M. Contreras; Dorie Smith; Guosheng Qu; Tao Huang; Lynn A. Spruce; Steven H. Seeholzer; Marlene Belfort; Gregory D. Van Duyne
The stable ribonucleoprotein (RNP) complex formed between the Lactococcus lactis group II intron and its self-encoded LtrA protein is essential for the intron’s genetic mobility. In this study, we report the biochemical, compositional, hydrodynamic and structural properties of active group II intron RNP particles (+A) isolated from its native host using a novel purification scheme. We employed small-angle X-ray scattering to determine the structural properties of these particles as they exist in solution. Using sucrose as a contrasting agent, we derived a two-phase quaternary model of the protein–RNA complex. This approach revealed that the spatial properties of the complex are largely defined by the RNA component, with the protein dimer located near the center of mass. A transfer RNA fusion engineered into domain II of the intron provided a distinct landmark consistent with this interpretation. Comparison of the derived +A RNP shape with that of the previously reported precursor intron (ΔA) particle extends previous findings that the loosely packed precursor RNP undergoes a dramatic conformational change as it compacts into its active form. Our results provide insights into the quaternary arrangement of these RNP complexes in solution, an important step to understanding the transition of the group II intron from the precursor to a species fully active for DNA invasion.
Nucleic Acids Research | 2007
Justin B. Robbins; Michelle Stapleton; Matthew J. Stanger; Dorie Smith; John T. Dansereau; Victoria Derbyshire; Marlene Belfort
Homing endonucleases are unusual enzymes, capable of recognizing lengthy DNA sequences and cleaving site-specifically within genomes. Many homing endonucleases are encoded within group I introns, and such enzymes promote the mobility reactions of these introns. Phage T4 has three group I introns, within the td, nrdB and nrdD genes. The td and nrdD introns are mobile, whereas the nrdB intron is not. Phage RB3 is a close relative of T4 and has a lengthier nrdB intron. Here, we describe I-TevIII, the H–N–H endonuclease encoded by the RB3 nrdB intron. In contrast to previous reports, we demonstrate that this intron is mobile, and that this mobility is dependent on I-TevIII, which generates 2-nt 3′ extensions. The enzyme has a distinct catalytic domain, which contains the H–N–H motif, and DNA-binding domain, which contains two zinc fingers required for interaction with the DNA substrate. Most importantly, I-TevIII, unlike the H–N–H endonucleases described so far, makes a double-strand break on the DNA homing site by acting as a dimer. Through deletion analysis, the dimerization interface was mapped to the DNA-binding domain. The unusual propensity of I-TevIII to dimerize to achieve cleavage of both DNA strands underscores the versatility of the H–N–H enzyme family.
RNA | 2013
Lydia M. Contreras; Tao Huang; Carol Lyn Piazza; Dorie Smith; Guosheng Qu; Grant Gelderman; Jeffrey P. Potratz; Rick Russell; Marlene Belfort
The influence of the cellular environment on the structures and properties of catalytic RNAs is not well understood, despite great interest in ribozyme function. Here we report on ribosome association of group II introns, which are ribozymes that are important because of their putative ancestry to spliceosomal introns and retrotransposons, their retromobility via an RNA intermediate, and their application as gene delivery agents. We show that group II intron RNA, in complex with the intron-encoded protein from the native Lactoccocus lactis host, associates strongly with ribosomes in vivo. Ribosomes have little effect on intron ribozyme activities; rather, the association with host ribosomes protects the intron RNA against degradation by RNase E, an enzyme previously shown to be a silencer of retromobility in Escherichia coli. The ribosome interacts strongly with the intron, exerting protective effects in vivo and in vitro, as demonstrated by genetic and biochemical experiments. These results are consistent with the ribosome influencing the integrity of catalytic RNAs in bacteria in the face of degradative nucleases that regulate intron mobility.