Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dorien Schepers is active.

Publication


Featured researches published by Dorien Schepers.


Nature Genetics | 2012

Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm

Mark E. Lindsay; Dorien Schepers; Nikhita Ajit Bolar; Jefferson J. Doyle; Elena M. Gallo; Justyna Fert-Bober; Marlies Kempers; Elliot K. Fishman; Yichun Chen; Loretha Myers; Djahita Bjeda; Gretchen Oswald; Abdallah F. Elias; Howard P. Levy; Britt Marie Anderlid; Margaret Yang; Ernie M.H.F. Bongers; Janneke Timmermans; Alan C. Braverman; Natalie Canham; Geert Mortier; Han G. Brunner; Peter H. Byers; Jennifer E. Van Eyk; Lut Van Laer; Harry C. Dietz; Bart Loeys

Loeys-Dietz syndrome (LDS) associates with a tissue signature for high transforming growth factor (TGF)-β signaling but is often caused by heterozygous mutations in genes encoding positive effectors of TGF-β signaling, including either subunit of the TGF-β receptor or SMAD3, thereby engendering controversy regarding the mechanism of disease. Here, we report heterozygous mutations or deletions in the gene encoding the TGF-β2 ligand for a phenotype within the LDS spectrum and show upregulation of TGF-β signaling in aortic tissue from affected individuals. Furthermore, haploinsufficient Tgfb2+/− mice have aortic root aneurysm and biochemical evidence of increased canonical and noncanonical TGF-β signaling. Mice that harbor both a mutant Marfan syndrome (MFS) allele (Fbn1C1039G/+) and Tgfb2 haploinsufficiency show increased TGF-β signaling and phenotypic worsening in association with normalization of TGF-β2 expression and high expression of TGF-β1. Taken together, these data support the hypothesis that compensatory autocrine and/or paracrine events contribute to the pathogenesis of TGF-β–mediated vasculopathies.


Nature Genetics | 2012

Mutations in the TGF-β Repressor SKI Cause Shprintzen-Goldberg Syndrome with Aortic Aneurysm

Alexander J. Doyle; Jefferson J. Doyle; Seneca L. Bessling; Samantha Maragh; Mark E. Lindsay; Dorien Schepers; Elisabeth Gillis; Geert Mortier; Tessa Homfray; Kimberly Sauls; Russell A. Norris; Nicholas D Huso; Dan Leahy; David W Mohr; Mark J. Caulfield; Alan F. Scott; A Destree; Raoul C. M. Hennekam; Pamela Arn; Cynthia J. Curry; Lut Van Laer; Andrew S. McCallion; Bart Loeys; Harry C. Dietz

Elevated transforming growth factor (TGF)-β signaling has been implicated in the pathogenesis of syndromic presentations of aortic aneurysm, including Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS). However, the location and character of many of the causal mutations in LDS intuitively imply diminished TGF-β signaling. Taken together, these data have engendered controversy regarding the specific role of TGF-β in disease pathogenesis. Shprintzen-Goldberg syndrome (SGS) has considerable phenotypic overlap with MFS and LDS, including aortic aneurysm. We identified causative variation in ten individuals with SGS in the proto-oncogene SKI, a known repressor of TGF-β activity. Cultured dermal fibroblasts from affected individuals showed enhanced activation of TGF-β signaling cascades and higher expression of TGF-β–responsive genes relative to control cells. Morpholino-induced silencing of SKI paralogs in zebrafish recapitulated abnormalities seen in humans with SGS. These data support the conclusions that increased TGF-β signaling is the mechanism underlying SGS and that high signaling contributes to multiple syndromic presentations of aortic aneurysm.


Annals of Neurology | 2014

Dominant-Negative Effects of KCNQ2 Mutations Are Associated with Epileptic Encephalopathy

Gökce Orhan; Merle Bock; Dorien Schepers; Elena I. Ilina; Stephanie Nadine Reichel; Heidi Löffler; Nicole Jezutkovic; Sarah Weckhuysen; Simone Mandelstam; Arvid Suls; Timm Danker; Elke Guenther; Ingrid E. Scheffer; Holger Lerche; Snezana Maljevic

Mutations in KCNQ2 and KCNQ3, encoding the voltage‐gated potassium channels KV7.2 and KV7.3, are known to cause benign familial neonatal seizures mainly by haploinsufficiency. Here, we set out to determine the disease mechanism of 7 de novo missense KCNQ2 mutations that were recently described in patients with a severe epileptic encephalopathy including pharmacoresistant seizures and pronounced intellectual disability.


American Journal of Human Genetics | 2016

Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-Dominant Tubulo-Interstitial and Glomerulocystic Kidney Disease with Anemia.

Nikhita Ajit Bolar; Christelle Golzio; Martina Živná; Gaëlle Hayot; Christine Van Hemelrijk; Dorien Schepers; Geert Vandeweyer; Alexander Hoischen; Jeroen R. Huyghe; Ann Raes; Erve Matthys; Emiel Sys; Myriam Azou; Marie Claire Gubler; Marleen Praet; Guy Van Camp; Kelsey McFadden; Igor Pediaditakis; Anna Přistoupilová; Kateřina Hodaňová; Petr Vyleťal; Hana Hartmannová; Viktor Stránecký; Helena Hůlková; Veronika Barešová; Ivana Jedličková; Jana Sovová; Aleš Hnízda; Kendrah Kidd; Anthony J. Bleyer

Autosomal-dominant tubulo-interstitial kidney disease (ADTKD) encompasses a group of disorders characterized by renal tubular and interstitial abnormalities, leading to slow progressive loss of kidney function requiring dialysis and kidney transplantation. Mutations in UMOD, MUC1, and REN are responsible for many, but not all, cases of ADTKD. We report on two families with ADTKD and congenital anemia accompanied by either intrauterine growth retardation or neutropenia. Ultrasound and kidney biopsy revealed small dysplastic kidneys with cysts and tubular atrophy with secondary glomerular sclerosis, respectively. Exclusion of known ADTKD genes coupled with linkage analysis, whole-exome sequencing, and targeted re-sequencing identified heterozygous missense variants in SEC61A1—c.553A>G (p.Thr185Ala) and c.200T>G (p.Val67Gly)—both affecting functionally important and conserved residues in SEC61. Both transiently expressed SEC6A1A variants are delocalized to the Golgi, a finding confirmed in a renal biopsy from an affected individual. Suppression or CRISPR-mediated deletions of sec61al2 in zebrafish embryos induced convolution defects of the pronephric tubules but not the pronephric ducts, consistent with the tubular atrophy observed in the affected individuals. Human mRNA encoding either of the two pathogenic alleles failed to rescue this phenotype as opposed to a complete rescue by human wild-type mRNA. Taken together, these findings provide a mechanism by which mutations in SEC61A1 lead to an autosomal-dominant syndromic form of progressive chronic kidney disease. We highlight protein translocation defects across the endoplasmic reticulum membrane, the principal role of the SEC61 complex, as a contributory pathogenic mechanism for ADTKD.


European Journal of Human Genetics | 2015

The SMAD-binding domain of SKI: a hotspot for de novo mutations causing Shprintzen-Goldberg syndrome.

Dorien Schepers; Alexander J. Doyle; Gretchen Oswald; Elizabeth Sparks; Loretha Myers; Patrick J. Willems; Sahar Mansour; Michael A. Simpson; Helena Frysira; Anneke Maat-Kievit; Rick van Minkelen; Jeanette Hoogeboom; Geert Mortier; Hannah Titheradge; Louise Brueton; Lois J. Starr; Zornitza Stark; Charlotte W. Ockeloen; Charles Marques Lourenço; Ed Blair; Emma Hobson; Jane A. Hurst; Isabelle Maystadt; A Destree; Katta M. Girisha; Michelle S. Miller; Harry C. Dietz; Bart Loeys; Lut Van Laer

Shprintzen–Goldberg syndrome (SGS) is a rare, systemic connective tissue disorder characterized by craniofacial, skeletal, and cardiovascular manifestations that show a significant overlap with the features observed in the Marfan (MFS) and Loeys–Dietz syndrome (LDS). A distinguishing observation in SGS patients is the presence of intellectual disability, although not all patients in this series present this finding. Recently, SGS was shown to be due to mutations in the SKI gene, encoding the oncoprotein SKI, a repressor of TGFβ activity. Here, we report eight recurrent and three novel SKI mutations in eleven SGS patients. All were heterozygous missense mutations located in the R-SMAD binding domain, except for one novel in-frame deletion affecting the DHD domain. Adding our new findings to the existing data clearly reveals a mutational hotspot, with 73% (24 out of 33) of the hitherto described unrelated patients having mutations in a stretch of five SKI residues (from p.(Ser31) to p.(Pro35)). This implicates that the initial molecular testing could be focused on mutation analysis of the first half of exon 1 of SKI. As the majority of the known mutations are located in the R-SMAD binding domain of SKI, our study further emphasizes the importance of TGFβ signaling in the pathogenesis of SGS.


Annals of cardiothoracic surgery | 2017

Differences in manifestations of Marfan syndrome, Ehlers-Danlos syndrome, and Loeys-Dietz syndrome

Josephina Meester; Aline Verstraeten; Dorien Schepers; Maaike Alaerts; Lut Van Laer; Bart Loeys

Many different heritable connective tissue disorders (HCTD) have been described over the past decades. These syndromes often affect the connective tissue of various organ systems, including heart, blood vessels, skin, joints, bone, eyes, and lungs. The discovery of these HCTD was followed by the identification of mutations in a wide range of genes encoding structural proteins, modifying enzymes, or components of the TGFβ-signaling pathway. Three typical examples of HCTD are Marfan syndrome (MFS), Ehlers-Danlos syndrome (EDS), and Loeys-Dietz syndrome (LDS). These syndromes show some degree of phenotypical overlap of cardiovascular, skeletal, and cutaneous features. MFS is typically characterized by cardiovascular, ocular, and skeletal manifestations and is caused by heterozygous mutations in FBN1, coding for the extracellular matrix (ECM) protein fibrillin-1. The most common cardiovascular phenotype involves aortic aneurysm and dissection at the sinuses of Valsalva. LDS is caused by mutations in TGBR1/2, SMAD2/3, or TGFB2/3, all coding for components of the TGFβ-signaling pathway. LDS can be distinguished from MFS by the unique presence of hypertelorism, bifid uvula or cleft palate, and widespread aortic and arterial aneurysm and tortuosity. Compared to MFS, LDS cardiovascular manifestations tend to be more severe. In contrast, no association is reported between LDS and the presence of ectopia lentis, a key distinguishing feature of MFS. Overlapping features between MFS and LDS include scoliosis, pes planus, anterior chest deformity, spontaneous pneumothorax, and dural ectasia. EDS refers to a group of clinically and genetically heterogeneous connective tissue disorders and all subtypes are characterized by variable abnormalities of skin, ligaments and joints, blood vessels, and internal organs. Typical presenting features include joint hypermobility, skin hyperextensibility, and tissue fragility. Up to one quarter of the EDS patients show aortic aneurysmal disease. The latest EDS nosology distinguishes 13 subtypes. Many phenotypic features show overlap between the different subtypes, which makes the clinical diagnosis rather difficult and highlights the importance of molecular diagnostic confirmation.


Human Mutation | 2018

A mutation update on the LDS-associated genes TGFB2/3 and SMAD2/3

Dorien Schepers; Giada Tortora; Hiroko Morisaki; Gretchen MacCarrick; Mark E. Lindsay; David Liang; Sarju G. Mehta; Jennifer Hague; J.M.A. Verhagen; Ingrid M.B.H. van de Laar; Marja W. Wessels; Yvonne Detisch; Mieke M. van Haelst; Annette F. Baas; Klaske D. Lichtenbelt; Kees P. J. Braun; Denise van der Linde; Jolien W. Roos-Hesselink; George McGillivray; Josephina Meester; Isabelle Maystadt; Paul Coucke; Elie El-Khoury; Sandhya Parkash; Birgitte Rode Diness; Lotte Risom; Ingrid Scurr; Yvonne Hilhorst-Hofstee; Takayuki Morisaki; Julie Richer

The Loeys–Dietz syndrome (LDS) is a connective tissue disorder affecting the cardiovascular, skeletal, and ocular system. Most typically, LDS patients present with aortic aneurysms and arterial tortuosity, hypertelorism, and bifid/broad uvula or cleft palate. Initially, mutations in transforming growth factor‐β (TGF‐β) receptors (TGFBR1 and TGFBR2) were described to cause LDS, hereby leading to impaired TGF‐β signaling. More recently, TGF‐β ligands, TGFB2 and TGFB3, as well as intracellular downstream effectors of the TGF‐β pathway, SMAD2 and SMAD3, were shown to be involved in LDS. This emphasizes the role of disturbed TGF‐β signaling in LDS pathogenesis. Since most literature so far has focused on TGFBR1/2, we provide a comprehensive review on the known and some novel TGFB2/3 and SMAD2/3 mutations. For TGFB2 and SMAD3, the clinical manifestations, both of the patients previously described in the literature and our newly reported patients, are summarized in detail. This clearly indicates that LDS concerns a disorder with a broad phenotypical spectrum that is still emerging as more patients will be identified. All mutations described here are present in the corresponding Leiden Open Variant Database.


Molecular Syndromology | 2018

Severe Phenotype of Cutis Laxa Type 1B with Antenatal Signs due to a Novel Homozygous Nonsense Mutation in EFEMP2

Pascaline Létard; Dorien Schepers; Juliette Albuisson; Patrick Bruneval; Emmanuel Spaggiari; Gerarda van de Beek; Suonavy Khung-Savatovsky; Nadia Belarbi; Yline Capri; Anne-Lise Delezoide; Bart Loeys; Fabien Guimiot

EFEMP2 mutations are known to be responsible for autosomal recessive cutis laxa type 1B (ARCL1B), a rare multisystem disease affecting skin, skeleton, and vascular structures. We report 2 additional related cases of ARCL1B of particular severity leading to termination of pregnancy. Cardinal signs of this connective tissue disease were already seen during the second trimester of pregnancy, then confirmed and clarified at autopsy. Anomalies included cutis laxa, arachnodactyly, clubfoot, wormian bones, moderate bowing of long bones with slender bone trabeculae, rib fractures, undermuscularized diaphragm, hiatal hernia, and arterial tortuosity with thick vascular walls and disorganized elastic fibers. Sequencing of the EFEMP2 gene revealed a novel homozygous nonsense mutation: c.639C>A (p.Cys213*). We performed a thorough histological analysis and discuss differential diagnoses, genotype-phenotype correlations, and the challenge of prenatal diagnosis of this disease.


Journal of Medical Genetics | 2018

Novel pathogenic SMAD2 variants in five families with arterial aneurysm and dissection: further delineation of the phenotype

Elyssa Cannaerts; Marlies Kempers; Alessandra Maugeri; Carlo Marcelis; Thatjana Gardeitchik; Julie Richer; Dimitra Micha; Luc M. Beauchesne; Janneke Timmermans; Paul Vermeersch; Nathalie Meyten; Sébastien Chénier; Gerarda van de Beek; Nils Peeters; Maaike Alaerts; Dorien Schepers; Lut Van Laer; Aline Verstraeten; Bart Loeys

Background Missense variants in SMAD2, encoding a key transcriptional regulator of transforming growth factor beta signalling, were recently reported to cause arterial aneurysmal disease. Objectives The aims of the study were to identify the genetic disease cause in families with aortic/arterial aneurysmal disease and to further define SMAD2 genotype–phenotype correlations. Methods and results Using gene panel sequencing, we identified a SMAD2 nonsense variant and four SMAD2 missense variants, all affecting highly conserved amino acids in the MH2 domain. The premature stop codon (c.612dup; p.(Asn205*)) was identified in a marfanoid patient with aortic root dilatation and in his affected father. A p.(Asn318Lys) missense variant was found in a Marfan syndrome (MFS)-like case who presented with aortic root aneurysm and in her affected daughter with marfanoid features and mild aortic dilatation. In a man clinically diagnosed with Loeys-Dietz syndrome (LDS) that presents with aortic root dilatation and marked tortuosity of the neck vessels, another missense variant, p.(Ser397Tyr), was identified. This variant was also found in his affected daughter with hypertelorism and arterial tortuosity, as well as his affected mother. The third missense variant, p.(Asn361Thr), was discovered in a man presenting with coronary artery dissection. Variant genotyping in three unaffected family members confirmed its absence. The last missense variant, p.(Ser467Leu), was identified in a man with significant cardiovascular and connective tissue involvement. Conclusion Taken together, our data suggest that heterozygous loss-of-function SMAD2 variants can cause a wide spectrum of autosomal dominant aortic and arterial aneurysmal disease, combined with connective tissue findings reminiscent of MFS and LDS.


Clinical Genetics | 2018

Overlapping but distinct roles for NOTCH receptors in human cardiovascular disease

Josephina Meester; Aline Verstraeten; Maaike Alaerts; Dorien Schepers; L. Van Laer; Bart Loeys

The NOTCH signalling pathway is an essential pathway, involved in many cellular processes, including cell fate decision, cell proliferation, and cell death and important in the development of most organs. Mutations in genes encoding components of the NOTCH signalling pathway lead to a spectrum of congenital disorders. Over the past decades, mutations in human NOTCH signalling genes have been identified in several diseases with cardiovascular involvement. NOTCH1 mutations have been described in bicuspid aortic valve disease, left‐sided congenital heart disease, and Adams‐Oliver syndrome. NOTCH2 mutations lead to the development of Alagille syndrome, while mutations in NOTCH3 cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. To date, mutations in NOTCH4 have not been associated with cardiovascular disease. This review focuses on the mutations described in NOTCH1, NOTCH2, and NOTCH3 and their associated cardiovascular phenotypes.

Collaboration


Dive into the Dorien Schepers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harry C. Dietz

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander J. Doyle

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge