Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dorin A. Todor is active.

Publication


Featured researches published by Dorin A. Todor.


Medical Physics | 2005

Developments in megavoltage cone beam CT with an amorphous silicon EPID: reduction of exposure and synchronization with respiratory gating.

J. Sillanpaa; Jenghwa Chang; G Mageras; Heinrich Riem; Eric C. Ford; Dorin A. Todor; C.C. Ling; Howard Amols

We have studied the feasibility of a low-dose megavoltage cone beam computed tomography (MV CBCT) system for visualizing the gross tumor volume in respiratory gated radiation treatments of nonsmall-cell lung cancer. The system consists of a commercially available linear accelerator (LINAC), an amorphous silicon electronic portal imaging device, and a respiratory gating system. The gantry movement and beam delivery are controlled using dynamic beam delivery toolbox, a commercial software package for executing scripts to control the LINAC. A specially designed interface box synchronizes the LINAC, image acquisition electronics, and the respiratory gating system. Images are preprocessed to remove artifacts due to detector sag and LINAC output fluctuations. We report on the output, flatness, and symmetry of the images acquired using different imaging parameters. We also examine the quality of three-dimensional (3D) tomographic reconstruction with projection images of anthropomorphic thorax, contrast detail, and motion phantoms. The results show that, with the proper choice of imaging parameters, the flatness and symmetry are reasonably good with as low as three beam pulses per projection image. Resolution of 5% electron density differences is possible in a contrast detail phantom using 100 projections and 30 MU. Synchronization of image acquisition with simulated respiration also eliminated motion artifacts in a moving phantom, demonstrating the systems capability for imaging patients undergoing gated radiation therapy. The acquisition time is limited by the patients respiration (only one image per breathing cycle) and is under 10 min for a scan of 100 projections. In conclusion, we have developed a MV CBCT system using commercially available components to produce 3D reconstructions, with sufficient contrast resolution for localizing a simulated lung tumor, using a dose comparable to portal imaging.


Medical Physics | 2005

Dosimetric effects of seed anisotropy and interseed attenuation for 103Pd and 125I prostate implants

Omar Chibani; Jeffrey F. Williamson; Dorin A. Todor

A Monte Carlo study is carried out to quantify the effects of seed anisotropy and interseed attenuation for Pd103 and I125 prostate implants. Two idealized and two real prostate implants are considered. Full Monte Carlo simulation (FMCS) of implants (seeds are physically and simultaneously simulated) is compared with isotropic point-source dose-kernel superposition (PSKS) and line-source dose-kernel superposition (LSKS) methods. For clinical pre- and post-procedure implants, the dose to the different structures (prostate, rectum wall, and urethra) is calculated. The discretized volumes of these structures are reconstructed using transrectal ultrasound contours. Local dose differences (PSKS versus FMCS and LSKS versus FMCS) are investigated. The dose contributions from primary versus scattered photons are calculated separately. For Pd103, the average absolute total dose difference between FMCS and PSKS can be as high as 7.4% for the idealized model and 6.1% for the clinical preprocedure implant. Similarly, the total dose difference is lower for the case of I125: 4.4% for the idealized model and 4.6% for a clinical post-procedure implant. Average absolute dose differences between LSKS and FMCS are less significant for both seed models: 3 to 3.6% for the idealized models and 2.9 to 3.2% for the clinical plans. Dose differences between PSKS and FMCS are due to the absence of both seed anisotropy and interseed attenuation modeling in the PSKS approach. LSKS accounts for seed anisotropy but not for the interseed effect, leading to systematically overestimated dose values in comparison with the more accurate FMCS method. For both idealized and clinical implants the dose from scattered photons represent less than 1∕3 of the total dose. For all studied cases, LSKS prostate DVHs overestimate D90 by 2 to 5% because of the missing interseed attenuation effect. PSKS and LSKS predictions of V150 and V200 are overestimated by up to 9% in comparison with the FMCS results. Finally, effects of seed anisotropy and interseed attenuation must be viewed in the context of other significant sources of dose uncertainty, namely seed orientation, source misplacement, prostate morphological changes and tissue heterogeneity.


Physics in Medicine and Biology | 2002

Operator-free, film-based 3D seed reconstruction in brachytherapy.

Dorin A. Todor; Gil'ad N. Cohen; Howard Amols; Marco Zaider

In brachytherapy implants, the accuracy of dose calculation depends on the ability to localize radioactive sources correctly. If performed manually using planar images, this is a time-consuming and often error-prone process-primarily because each seed must be identified on (at least) two films. In principle, three films should allow automatic seed identification and position reconstruction; however, practical implementation of the numerous algorithms proposed so far appears to have only limited reliability. The motivation behind this work is to create a fast and reliable system for real-time implant evaluation using digital planar images obtained from radiotherapy simulators, or mobile x-ray/fluoroscopy systems. We have developed algorithms and code for 3D seed coordinate reconstruction. The input consists of projections of seed positions in each of three isocentric images taken at arbitrary angles. The method proposed here consists of a set of heuristic rules (in a sense, a learning algorithm) that attempts to minimize seed misclassifications. In the clinic, this means that the system must be impervious to errors resulting from patient motion as well as from finite tolerances accepted in equipment settings. The software program was tested with simulated data, a pelvic phantom and patient data. One hundred and twenty permanent prostate implants were examined (105 125I and 15 103Pd) with the number of seeds ranging from 35 to 138 (average 79). The mean distance between actual and reconstructed seed positions is in the range 0.03-0.11 cm. On a Pentium III computer at 600 MHz the reconstruction process takes 10-30 s. The total number of seeds is independently validated. The process is robust and able to account for errors introduced in the clinic.


International Journal of Radiation Oncology Biology Physics | 2011

Improvements in critical dosimetric endpoints using the Contura multilumen balloon breast brachytherapy catheter to deliver accelerated partial breast irradiation: preliminary dosimetric findings of a phase iv trial.

Douglas W. Arthur; Frank A. Vicini; Dorin A. Todor; Thomas B. Julian; Maureen Lyden

PURPOSE Dosimetric findings in patients treated with the Contura multilumen balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) on a multi-institutional Phase IV registry trial are presented. METHODS AND MATERIALS Computed tomography-based three-dimensional planning with dose optimization was performed. For the trial, new ideal dosimetric goals included (1) ≥95% of the prescribed dose (PD) covering ≥90% of the target volume, (2) a maximum skin dose ≤125% of the PD, (3) maximum rib dose ≤145% of the PD, and (4) the V150 ≤50 cc and V200 ≤10 cc. The ability to concurrently achieve these dosimetric goals using the Contura MLB was analyzed. RESULTS 144 cases were available for review. Using the MLB, all dosimetric criteria were met in 76% of cases. Evaluating dosimetric criteria individually, 92% and 89% of cases met skin and rib dose criteria, respectively. In 93% of cases, ideal target volume coverage goals were met, and in 99%, dose homogeneity criteria (V150 and V200) were satisfied. When skin thickness was ≥5 mm to <7 mm, the median skin dose was limited to 120.1% of the PD, and when skin thickness was <5 mm, the median skin dose was 124.2%. When rib distance was <5 mm, median rib dose was reduced to 136.5% of the PD. When skin thickness was <7 mm and distance to rib was <5 mm, median skin and rib doses were jointly limited to 120.6% and 142.1% of the PD, respectively. CONCLUSION The Contura MLB catheter provided the means of achieving the imposed higher standard of dosimetric goals in the majority of clinical scenarios encountered.


Medical Physics | 2005

Recommendations of the American Association of Physicists in Medicine regarding the impact of implementing the 2004 task group 43 report on dose specification for 103Pd and 125I interstitial brachytherapy.

Jeffrey F. Williamson; Wayne M. Butler; Larry A. DeWerd; M. Saiful Huq; Geoffrey S. Ibbott; Zuofeng Li; Michael G. Mitch; Ravinder Nath; Mark J. Rivard; Dorin A. Todor

In March 2004, the recommendations of the American Association of Physicists in Medicine (AAPM) on the interstitial brachytherapy dosimetry using 125I and 103Pd were reported in Medical Physics [TG-43 Update: Rivard et al., 31, 633-674 (2004)]. These recommendations include some minor changes in the dose-calculation formalism and a major update of the dosimetry parameters for eight widely used interstitial brachytherapy sources. A full implementation of these recommendations could result in unintended changes in delivered dose without corresponding revisions in the prescribed dose. Because most published clinical experience with permanent brachytherapy is based upon two widely used source models, the 125I Model 6711 and 103Pd Model 200 sources, in this report we present an analysis of the dosimetric impact of the 2004 TG-43 dosimetry parameters on the history of dose delivery for these two source models. Our analysis indicates that the currently recommended prescribed dose of 125 Gy for Model 200 103Pd implants planned using previously recommended dosimetry parameters [AAPM 103Pd dose prescription: Williamson et al., Med. Phys. 27, 634-642 (2000)] results in a delivered dose of 120 Gy according to dose calculations based on the 2004 TG-43 update. Further, delivered doses prior to October 1997 varied from 113 to 119 Gy for a prescribed dose of 115 Gy compared to 124 Gy estimated by the AAPM 2000 report. For 125I implants using Model 6711 seeds, there are no significant changes (less than 2%). Practicing physicians should take these results into account when selecting the clinically appropriate prescribed dose for 103Pd interstitial implant patients following implementation of the 2004 TG-43 update dose-calculation recommendations. The AAPM recommends that the radiation oncology community review this report and consider whether the currently recommended dose level (125 Gy) needs to be revised.


International Journal of Radiation Oncology Biology Physics | 2009

A Comparison of Skin and Chest Wall Dose Delivered With Multicatheter, Contura Multilumen Balloon, and MammoSite Breast Brachytherapy

Laurie W. Cuttino; Dorin A. Todor; Mihaela Rosu; Douglas W. Arthur

PURPOSE Skin and chest wall doses have been correlated with toxicity in patients treated with breast brachytherapy . This investigation compared the ability to control skin and chest wall doses between patients treated with multicatheter (MC), Contura multilumen balloon (CMLB), and MammoSite (MS) brachytherapy. METHODS AND MATERIALS 43 patients treated with the MC technique, 45 patients treated with the CMLB, and 83 patients treated with the MS were reviewed. The maximum doses delivered to the skin and chest wall were calculated for all patients. RESULTS The mean maximum skin doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.2 Gy per fraction (94% of prescription dose), respectively. Although the skin distances were similar (p = 0.23) for the two balloon techniques, the mean skin dose with the CMLB was significantly lower than with the MS (p = 0.05). The mean maximum rib doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.6 Gy per fraction (105% of prescription dose), respectively. Again, the mean rib dose with the CMLB was significantly lower than with the MS (p = 0.002). CONCLUSION The MC and CMLB techniques are associated with significantly lower mean skin and rib doses than is the MS. Treatment with the MS was associated with significantly more patients receiving doses to the skin or rib in excess of 125% of the prescription. Treatment with the CMLB may prove to yield less normal tissue toxicity than treatment with the MS.


Brachytherapy | 2008

Skin and chest wall dose with multi-catheter and MammoSite breast brachytherapy: Implications for late toxicity

Laurie W. Cuttino; Dorin A. Todor; Miheala Rosu; Douglas W. Arthur

PURPOSE Accelerated partial breast irradiation (APBI) continues to increase in popularity. Up to 14% of patients treated with the MammoSite (MS) report some degree of chronic pain, which may be related to chest wall toxicity. Reports from several institutions using the multicatheter (MC) technique have not shown associated elevated chest wall toxicity. Additionally, a recent investigation has suggested that increased toxicity may occur with the MS when the dose to the chest wall exceeds 125% of the prescribed dose. This investigation compares the skin and chest wall doses of a cohort of patients treated with the MC technique to a group treated with the MS. METHODS AND MATERIALS The dosimetric data for 43 patients treated with the MC technique and 83 patients treated with the MS at Virginia Commonwealth University were reviewed. This cohort represents consecutively treated patients from our most recent experience to minimize any learning curve effect on dosimetry. Plans were generated using 3D software (Brachyvision, Varian Medical Systems, Inc., Palo Alto, CA). Multiple dwell positions were used for all MS patients to optimize dose delivery. The minimum distances from the planning target volume to the skin and chest wall were calculated, as well as the maximum doses delivered to the skin and chest wall. RESULTS The mean skin distances for patients treated with the MC technique and the MS were 0.5 and 0.9cm, respectively (p<0.002). Despite the significantly smaller mean skin distance, the mean skin dose for the MC technique was only 2.3Gy per fraction (67% of prescription dose). The mean skin dose for the MS was 3.2Gy per fraction (94% of prescription dose, p<0.001). The mean chest wall distance was 0.9cm for the MC technique and 1.0cm for the MS (p=0.55). Again, the mean chest wall dose for the MC technique was only 2.3Gy per fraction (67% of prescription dose). The mean skin dose for the MS was 3.6Gy per fraction (105% of prescription dose, p<0.001). The percentage of patients receiving skin doses in excess of 125% for the MC and MS were 0% and 9.6%, respectively. The percentage of patients receiving chest wall doses in excess of 125% for the MC and MS were 0% and 38.6%, respectively. CONCLUSION The MC technique results in more conformal dose delivery, with significantly lower mean skin and chest wall doses. Treatment with the MS was associated with significantly more patients receiving doses to the skin or chest wall in excess of 125% of the prescription. Given the limited followup available for the MS, and the significant dose delivered to the chest wall, the use of this device may be associated with a higher incidence of late chest wall toxicity than previously expected.


International Journal of Radiation Oncology Biology Physics | 2014

Long-Term Results From the Contura Multilumen Balloon Breast Brachytherapy Catheter Phase 4 Registry Trial

Laurie W. Cuttino; Douglas W. Arthur; Frank A. Vicini; Dorin A. Todor; Thomas B. Julian; Nitai D. Mukhopadhyay

PURPOSE To describe the long-term outcomes from a completed, multi-institutional phase 4 registry trial using the Contura multilumen balloon (CMLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer. METHODS AND MATERIALS Three hundred forty-two evaluable patients were enrolled by 23 institutions between January 2008 and February 2011. All patients received 34 Gy in 10 fractions, delivered twice daily. Rigorous target coverage and normal tissue dose constraints were observed. RESULTS The median follow-up time was 36 months (range, 1-54 months). For the entire patient cohort of 342 patients, 10 patients experienced an ipsilateral breast tumor recurrence (IBTR). Eight of these IBTR were classified as true recurrences/marginal miss (TRMM), and 2 were elsewhere failures (EF). Local recurrence-free survival was 97.8% at 3 years. For the entire cohort, 88% of patients had good to excellent overall cosmesis. The overall incidence of infection was 8.5%. Symptomatic seroma was reported in only 4.4% of patients. A separate analysis was performed to determine whether improved outcomes would be observed for patients treated at high-volume centers with extensive brachytherapy experience. Three IBTR were observed in this cohort, only 1 of which was classified as a TRMM. Local recurrence-free survival at high-volume centers was 98.1% at 3 years. Overall cosmetic outcome and toxicity were superior in patients treated at high-volume centers. In these patients, 95% had good to excellent overall cosmesis. Infection was observed in only 2.9% of patients, and symptomatic seroma was reported in only 1.9%. CONCLUSION Use of the CMLB for APBI delivery is associated with acceptable long-term local control and toxicity. Local recurrence-free survival was 97.8% at 3 years. Significant (grade 3) toxicity was uncommon, and no grade 4 toxicity was observed. Treatment at high-volume centers was associated with decreased late toxicity.


Physics in Medicine and Biology | 2005

Demonstration of a forward iterative method to reconstruct brachytherapy seed configurations from x-ray projections

Martin J. Murphy; Dorin A. Todor

By monitoring brachytherapy seed placement and determining the actual configuration of the seeds in vivo, one can optimize the treatment plan during the process of implantation. Two or more radiographic images from different viewpoints can in principle allow one to reconstruct the configuration of implanted seeds uniquely. However, the reconstruction problem is complicated by several factors: (1) the seeds can overlap and cluster in the images; (2) the images can have distortion that varies with viewpoint when a C-arm fluoroscope is used; (3) there can be uncertainty in the imaging viewpoints; (4) the angular separation of the imaging viewpoints can be small owing to physical space constraints; (5) there can be inconsistency in the number of seeds detected in the images; and (6) the patient can move while being imaged. We propose and conceptually demonstrate a novel reconstruction method that handles all of these complications and uncertainties in a unified process. The method represents the three-dimensional seed and camera configurations as parametrized models that are adjusted iteratively to conform to the observed radiographic images. The morphed model seed configuration that best reproduces the appearance of the seeds in the radiographs is the best estimate of the actual seed configuration. All of the information needed to establish both the seed configuration and the camera model is derived from the seed images without resort to external calibration fixtures. Furthermore, by comparing overall image content rather than individual seed coordinates, the process avoids the need to establish correspondence between seed identities in the several images. The method has been shown to work robustly in simulation tests that simultaneously allow for unknown individual seed positions, uncertainties in the imaging viewpoints and variable image distortion.


American Journal of Clinical Oncology | 2006

Three-dimensional Conformal External Beam Radiotherapy (3d-crt) for Accelerated Partial Breast Irradiation (apbi): What Is the Correct Prescription Dose?

Laurie W. Cuttino; Dorin A. Todor; Lynn Pacyna; Peck-Sun Lin; Douglas W. Arthur

Objective:This study is an evaluation of the biologic equivalence of the dose prescriptions for brachytherapy and 3-dimensional conformal external beam radiotherapy (3D-CRT) accelerated partial breast irradiation (APBI), using actual patient dose matrix data, and is based on the concept of equivalent uniform biologically effective dose (EUBED). This formalism allows a nonuniform dose distribution to be reduced to an equivalent uniform dose, while also accounting for fraction size. Materials and Methods:Five computed tomography scans were selected from a group of patients treated with multicatheter interstitial APBI. Dose matrices for the brachytherapy plans were computed and analyzed with in-house software. For each patient, the EUBED for the brachytherapy dose matrix was generated based on calculations performed at the voxel-level. These EUBED values were then used to calculate the biologically equivalent fraction size for 3D-CRT (eud). Results:The mean equivalent fraction size (eudmean) and maximum equivalent fraction size (eudmax) were calculated for each patient using 100 different values of the α/β ratio. The eudmean ranged from 3.67 to 3.69 Gy, while the eudmax ranged from 3.79 to 3.82 Gy. For all values of the α/β ratio, the maximum fraction size calculated to deliver a biologically equivalent dose with 3D-CRT was 3.82 Gy, with an equivalent total prescription dose of 38.2 Gy. Conclusion:Utilizing a wide range of established radiobiological parameters, this study suggests that the maximum fraction size needed to deliver a biologically equivalent dose using 3D-CRT is 3.82 Gy, supporting the continued use of 3.85Gy BID in the current national cooperative trial.

Collaboration


Dive into the Dorin A. Todor's collaboration.

Top Co-Authors

Avatar

Douglas W. Arthur

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Laurie W. Cuttino

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Jeffrey F. Williamson

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Emma C. Fields

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael P. Hagan

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Thomas B. Julian

Allegheny General Hospital

View shared research outputs
Top Co-Authors

Avatar

Martin J. Murphy

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Mitchell S. Anscher

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge