Dorina Thanou
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dorina Thanou.
IEEE Transactions on Signal Processing | 2014
Dorina Thanou; David I Shuman; Pascal Frossard
In sparse signal representation, the choice of a dictionary often involves a tradeoff between two desirable properties - the ability to adapt to specific signal data and a fast implementation of the dictionary. To sparsely represent signals residing on weighted graphs, an additional design challenge is to incorporate the intrinsic geometric structure of the irregular data domain into the atoms of the dictionary. In this work, we propose a parametric dictionary learning algorithm to design data-adapted, structured dictionaries that sparsely represent graph signals. In particular, we model graph signals as combinations of overlapping local patterns. We impose the constraint that each dictionary is a concatenation of subdictionaries, with each subdictionary being a polynomial of the graph Laplacian matrix, representing a single pattern translated to different areas of the graph. The learning algorithm adapts the patterns to a training set of graph signals. Experimental results on both synthetic and real datasets demonstrate that the dictionaries learned by the proposed algorithm are competitive with and often better than unstructured dictionaries learned by state-of-the-art numerical learning algorithms in terms of sparse approximation of graph signals. In contrast to the unstructured dictionaries, however, the dictionaries learned by the proposed algorithm feature localized atoms and can be implemented in a computationally efficient manner in signal processing tasks such as compression, denoising, and classification.
IEEE Transactions on Signal Processing | 2016
Xiaowen Dong; Dorina Thanou; Pascal Frossard; Pierre Vandergheynst
The construction of a meaningful graph plays a crucial role in the success of many graph-based representations and algorithms for handling structured data, especially in the emerging field of graph signal processing. However, a meaningful graph is not always readily available from the data, nor easy to define depending on the application domain. In particular, it is often desirable in graph signal processing applications that a graph is chosen such that the data admit certain regularity or smoothness on the graph. In this paper, we address the problem of learning graph Laplacians, which is equivalent to learning graph topologies, such that the input data form graph signals with smooth variations on the resulting topology. To this end, we adopt a factor analysis model for the graph signals and impose a Gaussian probabilistic prior on the latent variables that control these signals. We show that the Gaussian prior leads to an efficient representation that favors the smoothness property of the graph signals. We then propose an algorithm for learning graphs that enforces such property and is based on minimizing the variations of the signals on the learned graph. Experiments on both synthetic and real world data demonstrate that the proposed graph learning framework can efficiently infer meaningful graph topologies from signal observations under the smoothness prior.
international conference on acoustics, speech, and signal processing | 2015
Xiaowen Dong; Dorina Thanou; Pascal Frossard; Pierre Vandergheynst
The construction of a meaningful graph plays a crucial role in the emerging field of signal processing on graphs. In this paper, we address the problem of learning graph Laplacians, which is similar to learning graph topologies, such that the input data form graph signals with smooth variations on the resulting topology. We adopt a factor analysis model for the graph signals and impose a Gaussian probabilistic prior on the latent variables that control these graph signals. We show that the Gaussian prior leads to an efficient representation that favours the smoothness property of the graph signals, and propose an algorithm for learning graphs that enforce such property. Experiments demonstrate that the proposed framework can efficiently infer meaningful graph topologies from only the signal observations.
ieee global conference on signal and information processing | 2013
Dorina Thanou; David I Shuman; Pascal Frossard
We propose a parametric dictionary learning algorithm to design structured dictionaries that sparsely represent graph signals. We incorporate the graph structure by forcing the learned dictionaries to be concatenations of subdictionaries that are polynomials of the graph Laplacian matrix. The resulting atoms capture the main spatial and spectral components of the graph signals of interest, leading to adaptive representations with efficient implementations. Experimental results demonstrate the effectiveness of the proposed algorithm for the sparse approximation of graph signals.
IEEE Transactions on Image Processing | 2016
Dorina Thanou; Philip A. Chou; Pascal Frossard
This paper addresses the problem of compression of 3D point cloud sequences that are characterized by moving 3D positions and color attributes. As temporally successive point cloud frames share some similarities, motion estimation is key to effective compression of these sequences. It, however, remains a challenging problem as the point cloud frames have varying numbers of points without explicit correspondence information. We represent the time-varying geometry of these sequences with a set of graphs, and consider 3D positions and color attributes of the point clouds as signals on the vertices of the graphs. We then cast motion estimation as a feature-matching problem between successive graphs. The motion is estimated on a sparse set of representative vertices using new spectral graph wavelet descriptors. A dense motion field is eventually interpolated by solving a graph-based regularization problem. The estimated motion is finally used for removing the temporal redundancy in the predictive coding of the 3D positions and the color characteristics of the point cloud sequences. Experimental results demonstrate that our method is able to accurately estimate the motion between consecutive frames. Moreover, motion estimation is shown to bring a significant improvement in terms of the overall compression performance of the sequence. To the best of our knowledge, this is the first paper that exploits both the spatial correlation inside each frame (through the graph) and the temporal correlation between the frames (through the motion estimation) to compress the color and the geometry of 3D point cloud sequences in an efficient way.
international conference on image processing | 2015
Dorina Thanou; Philip A. Chou; Pascal Frossard
This paper addresses the problem of motion estimation in 3D point cloud sequences that are characterized by moving 3D positions and color attributes. Motion estimation is key to effective compression of these sequences, but it remains a challenging problem as the temporally successive frames have varying sizes without explicit correspondence information. We represent the time-varying geometry of these sequences with a set of graphs, and consider 3D positions and color attributes of the points clouds as signals on the vertices of the graph. We then cast motion estimation as a feature matching problem between successive graphs. The motion is estimated on a sparse set of representative vertices using new spectral graph wavelet descriptors. A dense motion field is eventually interpolated by solving a graph-based regularization problem. The estimated motion is finally used for color compensation in the compression of 3D point cloud sequences. Experimental results demonstrate that our method is able to accurately estimate the motion and to bring significant improvement in terms of color compression performance.
international conference on acoustics, speech, and signal processing | 2015
Dorina Thanou; Pascal Frossard
We study the problem of learning constitutive features for the effective representation of graph signals, which can be considered as observations collected on different graph topologies. We propose to learn graph atoms and build graph dictionaries that provide sparse representations for classes of signals, which share common spectral characteristics but reside on the vertices of different graphs. In particular, we concentrate on graph atoms that are constructed on polynomials of the graph Laplacian. Such a design permits to abstract from the precise graph topology and to design dictionaries that can be trained and eventually used on different graphs. We cast the dictionary learning problem as an alternating optimization problem where the dictionary and the sparse representations of training signals are updated iteratively. Experimental results on synthetic graph signals representing common processes on graphs show that our dictionaries are able to capture the important components in graph signals. Further experiments on traffic data confirm the benefits of our dictionaries in the sparse approximation of signals capturing traffic bottlenecks.
international conference on acoustics, speech, and signal processing | 2017
Hermina Petric Maretic; Dorina Thanou; Pascal Frossard
Graph signals offer a very generic and natural representation for data that lives on networks or irregular structures. The actual data structure is however often unknown a priori but can sometimes be estimated from the knowledge of the application domain. If this is not possible, the data structure has to be inferred from the mere signal observations. This is exactly the problem that we address in this paper, under the assumption that the graph signals can be represented as a sparse linear combination of a few atoms of a structured graph dictionary. The dictionary is constructed on polynomials of the graph Laplacian, which can sparsely represent a general class of graph signals composed of localized patterns on the graph. We formulate a graph learning problem, whose solution provides an ideal fit between the signal observations and the sparse graph signal model. As the problem is non-convex, we propose to solve it by alternating between a signal sparse coding and a graph update step. We provide experimental results that outline the good graph recovery performance of our method, which generally compares favourably to other recent network inference algorithms.
international conference on acoustics, speech, and signal processing | 2012
Dorina Thanou; Effrosyni Kokiopoulou; Pascal Frossard
We consider the problem of distributed average consensus in a sensor network where sensors exchange quantized information with their neighbors. In particular, we exploit the increasing correlation between the exchanged values throughout the iterations of the consensus algorithm in order to design a novel quantization scheme, particularly efficient at low bit rates. We implement a low complexity, uniform quantizer in each sensor, where refined quantization is achieved by progressively reducing the quantization intervals with the convergence of the consensus algorithm. We propose a recurrence relation for computing the quantization parameters that depend on the network topology and the communication rate. Finally, simulation results demonstrate the effectiveness of the progressive quantization scheme that leads to the consensus solution even at low communication rate.
international conference on acoustics, speech, and signal processing | 2017
Vassilis Kalofolias; Andreas Loukas; Dorina Thanou; Pascal Frossard
We consider the problem of inferring the hidden structure of high-dimensional time-varying data. In particular, we aim at capturing the dynamic relationships by representing data as valued nodes in a sequence of graphs. Our approach is motivated by the observation that imposing a meaningful graph topology can help solving the generally ill-posed and challenging problem of structure inference. To capture the temporal evolution in the sequence of graphs, we introduce a new prior that asserts that the graph edges change smoothly in time. We propose a primal-dual optimization algorithm that scales linearly with the number of allowed edges and can be easily parallelized. Our new algorithm is shown to outperform standard graph learning and other baseline methods both on a synthetic and a real dataset.