Doris Herrmann
Biotechnology Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Doris Herrmann.
Biology of Reproduction | 2002
Giovanna Lazzari; C. Wrenzycki; Doris Herrmann; Roberto Duchi; T.A.M. Kruip; Heiner Niemann; Cesare Galli
Abstract The large offspring syndrome (LOS) is observed in bovine and ovine offspring following transfer of in vitro-produced (IVP) or cloned embryos and is characterized by a multitude of pathologic changes, of which extended gestation length and increased birthweight are predominant features. In the present study, we used bovine blastocysts to analyze cellular parameters, i.e., the number of cells in Day 7 blastocysts and the size of Day 12 elongating blastocysts, and molecular parameters, i.e., the relative abundance of developmentally important genes: glucose transporter (Glut) 1, Glut-2, Glut-3, Glut-4, heat shock protein (Hsp) 70.1, Cu/Zn-superoxide dismutase (SOD), histone H4.1, basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF) I receptor (R), and IGFII-R. Some blastocysts were produced by in vitro maturation and fertilization followed by in vitro culture in synthetic oviduct fluid medium supplemented with BSA or human serum or by in vivo culture in the sheep oviduct. Other blastocysts were derived in vivo from the uterine horns of superovulated donors. The findings made in the early embryos were related to a representative number of calves obtained from each production system and from artificial insemination (AI). In vitro culture of bovine embryos in the presence of high concentrations of serum or BSA significantly increased the number of cells in Day 7 blastocysts, the size of blastocysts on Day 12, and the relative abundance of the transcripts for Hsp70.1, Cu/Zn-SOD, Glut-3, Glut-4, bFGF, and IGFI-R when compared with embryos from the in vivo production groups. Birthweights of calves derived from IVP embryos were significantly higher than those of calves derived from sheep oviduct culture, superovulation, or AI. The results support the hypothesis that persistence of early deviations in development is causally involved in the incidence of LOS, in particular in increased birthweights. The cellular and molecular parameters analyzed in this study can be considered early markers of LOS in cattle.
Molecular Reproduction and Development | 1999
C. Wrenzycki; Doris Herrmann; Joseph Wallace Carnwath; Heinrich Niemann
In preimplantation bovine embryos, the relative abundance of various developmentally important gene transcripts was determined by a semi‐quantitative RT‐PCR assay to analyze the effects of two medium supplements, serum or polyvinyl alcohol (PVA). Development to morula, blastocyst, and hatched blastocyst stages was higher (P ≤ 0.05) in medium supplemented with serum than in medium supplemented with PVA. Connexin43 mRNA expression virtually disappeared from the 8–16 cell stage onward, but reappeared in the hatched blastocyst in serum‐supplemented medium, whereas it was detected in PVA‐derived embryos throughout development. No differences were found for plakophilin mRNA between both culture groups. Desmocollin II mRNA showed a sharp increase at the blastocyst stage in both groups with a higher transcription level in PVA‐generated embryos. A significant difference in desmocollin III transcripts was detectable at the 8–16‐cell stage between serum‐ and PVA‐derived embryos. Transcripts for desmoglein 1 and desmocollin I were not detected at any preimplantation stage, irrespective of medium supplementation. The relative abundance of glucosetransporter‐1 mRNA was significantly increased at the 8–16‐cell stage in embryos produced in medium supplemented with PVA, but not serum. Heat shock protein and poly(A)polymerase mRNA were continuously expressed during preimplantation development in both culture groups. Although poly(A)polymerase mRNA was significantly elevated in PVA‐ over serum‐derived embryos, heat shock protein mRNA expression was significantly enhanced in serum‐generated embryos over PVA‐derived embryos. Interferon tau mRNA showed a significant increase at the hatched blastocyst stage only in PVA‐supplemented medium. These data suggest that alterations in mRNA expression are associated with culture environment. Timing and magnitude of the alterations varied among the different transcripts and were significantly affected by the presence of exogenous protein in a stage‐specific manner, predominantly at critical developmental time points. Mol. Reprod. Dev. 53:8–18, 1999.
Biology of Reproduction | 2002
C. Wrenzycki; A. Lucas-Hahn; Doris Herrmann; Erika Lemme; K. Korsawe; Heiner Niemann
Abstract Equal expression of X-linked genes such as G6PD and PGK in females and males and the initiation of X-chromosome inactivation are critically dependent on the expression of the X-inactive specific transcript (Xist). The objective of the present study was to determine the effects of in vitro production (IVP) and nuclear transfer (NT) on the relative abundance (RA) of the X-linked transcripts G6PD, PGK, and Xist in preimplantation bovine embryos. In experiment 1, sex-determined IVP or in vivo-produced embryos were analyzed for mRNA expression of the 3 genes. The sex ratio was 36% vs. 64% in IVP blastocysts and thus deviated significantly from the expected ratio of 50% in the vivo control group. The RA of G6PD transcripts was significantly higher in female IVP embryos than in male embryos. In contrast, no significant differences were seen between in vivo-derived female embryos and their male counterparts. At the morula stage, female IVP embryos transcribed significantly more PGK mRNA than did male embryos. However, blastocysts did not exhibit significant differences in PGK transcripts. No differences were observed for in vivo-derived embryos with regard to the RA of PGK transcripts. The RA of Xist mRNA was significantly higher in all female embryos than in their male counterparts. In experiment 2, IVP, in vivo-developed, NT-derived, and parthenogenetic embryos carrying two X chromosomes of either maternal and paternal origin or of maternal origin only (parthenogenotes) were analyzed for the RA of the 3 genes. In NT-derived morulae, the RA of G6PD transcripts was significantly increased compared with their IVP and in vivo-generated counterparts. G6PD transcript levels were significantly increased in IVP blastocysts compared with in vivo-generated and parthenogenetic embryos. At the morula stage, PGK transcripts were similar in all groups, but the RA of PGK transcripts was significantly higher in IVP blastocysts than in their in vivo-generated, parthenogenetic, and NT-derived counterparts. The RA of Xist was significantly elevated in NT-derived morulae compared with IVP, in vivo-generated, and parthenogenetic embryos. NT-derived blastocysts showed an increased Xist expression compared with that of IVP, in vivo-generated, and parthenogenetic embryos. Results of the present study show for the first time that differences in X-chromosome-linked gene transcript levels are related to a perturbed dosage compensation in female and male IVP and female NT-derived embryos. This finding warrants further studies to improve IVP systems and NT protocols to ensure the production of embryos with normal gene expression patterns.
Reproduction, Fertility and Development | 2004
C. Wrenzycki; Doris Herrmann; Andrea Lucas-Hahn; Karin Korsawe; Erika Lemme; Heinrich Niemann
The preimplantation bovine embryo is initially under the control of maternal genomic information that is accumulated during oogenesis. The genetic programme of development soon becomes dependent on new transcripts derived from activation of the embryonic genome. The early steps in development, including the timing of the first cleavage, activation of the embryonic genome, compaction and blastocyst formation, can be affected by the culture media and conditions, as well as the production procedure itself. These perturbations can possibly result in a marked decrease in the quality of the resulting blastocysts and may even affect the viability of offspring born after transfer. In vitro procedures such as in vitro production and somatic nuclear transfer of bovine embryos have been shown to be correlated with significant up- or downregulation, de novo induction or silencing of genes critical for undisturbed fetal and neonatal development. These alterations are likely to be caused by epigenetic modifications, such as DNA methylation and histone modifications. Analysis of perturbed epigenetic reprogramming and of the related phenomena, such as genomic imprinting and X-chromosome inactivation, in bovine embryos is promising for understanding the underlying mechanisms of developmental abnormalities, such as large offspring syndrome.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Wilfried August Kues; Smita Sudheer; Doris Herrmann; Joseph Wallace Carnwath; V. Havlicek; U. Besenfelder; Hans Lehrach; James Adjaye; Heiner Niemann
Bovine embryos can be generated by in vitro fertilization or somatic nuclear transfer; however, these differ from their in vivo counterparts in many aspects and exhibit a higher proportion of developmental abnormalities. Here, we determined for the first time the transcriptomes of bovine metaphase II oocytes and all stages of preimplantation embryos developing in vivo up to the blastocyst using the Affymetrix GeneChip Bovine Genome Array which examines approximately 23,000 transcripts. The data show that bovine oocytes and embryos transcribed a significantly higher number of genes than somatic cells. Several hundred genes were transcribed well before the 8-cell stage, at which the major activation of the bovine genome expression occurs. Importantly, stage-specific expression patterns in 2-cell, 4-cell, and 8-cell stages, and in morulae and blastocysts, were detected, indicating dynamic changes in the embryonic transcriptome and in groups of transiently active genes. Pathway analysis revealed >120 biochemical pathways that are operative in early preimplantation bovine development. Significant differences were observed between the mRNA expression profiles of in vivo and in vitro matured oocytes, highlighting the need to include in vivo derived oocytes/embryos in studies evaluating assisted reproductive techniques. This study provides the first comprehensive analysis of gene expression and transcriptome dynamics of in vivo developing bovine embryos and will serve as a basis for improving assisted reproductive technology.
BMC Genomics | 2004
James Adjaye; Ralf Herwig; Doris Herrmann; Wasco Wruck; Alia BenKahla; Thore C. Brink; Monika Anna Nowak; J.W. Carnwath; Claus Hultschig; Heinrich Niemann; Hans Lehrach
BackgroundCross-species gene-expression comparison is a powerful tool for the discovery of evolutionarily conserved mechanisms and pathways of expression control. The usefulness of cDNA microarrays in this context is that broad areas of homology are compared and hybridization probes are sufficiently large that small inter-species differences in nucleotide sequence would not affect the analytical results. This comparative genomics approach would allow a common set of genes within a specific developmental, metabolic, or disease-related gene pathway to be evaluated in experimental models of human diseases. The objective of this study was to investigate the feasibility and reproducibility of cross-species analysis employing a human cDNA microarray as probe.ResultsAs a proof of principle, total RNA derived from human and bovine fetal brains was used as a source of labelled targets for hybridisation onto a human cDNA microarray composed of 349 characterised genes. Each gene was spotted 20 times representing 6,980 data points thus enabling highly reproducible spot quantification. Employing high stringency hybridisation and washing conditions, followed by data analysis, revealed slight differences in the expression levels and reproducibility of the signals between the two species. We also assigned each of the genes into three expression level categories- i.e. high, medium and low. The correlation co-efficient of cross hybridisation between the orthologous genes was 0.94. Verification of the array data by semi-quantitative RT-PCR using common primer sequences enabled co-amplification of both human and bovine transcripts. Finally, we were able to assign gene names to previously uncharacterised bovine ESTs.ConclusionsResults of our study demonstrate the harnessing and utilisation power of comparative genomics and prove the feasibility of using human microarrays to facilitate the identification of co-expressed orthologous genes in common tissues derived from different species.
Xenotransplantation | 2009
Marianne Oropeza; Björn Petersen; Joseph Wallace Carnwath; Andrea Lucas-Hahn; Erika Lemme; Petra Hassel; Doris Herrmann; Brigitte Barg-Kues; Stephanie Holler; Anna-Lisa Queisser; Reinhard Schwinzer; Rabea Hinkel; Christian Kupatt; Heiner Niemann
Oropeza M, Petersen B, Carnwath JW, Lucas‐Hahn A, Lemme E, Hassel P, Herrmann D, Barg‐Kues B, Holler S, Queisser A‐L, Schwinzer R, Hinkel R, Kupatt C, Niemann H. Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli. Xenotransplantation 2009; 16: 522–534.
Transgenic Research | 1999
Heinrich Niemann; Roman Halter; Joseph Wallace Carnwath; Doris Herrmann; Erika Lemme; Dietrich Paul
By targeting the expression of sequences encoding non‐milk proteins to the mammary gland of transgenic farm animals, the organ could serve as a ‘bioreactor’ for producing pharmacologically active proteins on a large scale. Here we report the generation of transgenic sheep bearing a fusion gene construct with the human blood clotting factor VIII (hFVIII) cDNA under the transcriptional control of a 2.2 kb fragment of the mammary gland specific promoter of the ovine ß‐Lactoglobulin (ß‐Lac) gene. Six founder animals were generated bearing a hFVIII cDNA construct with the introns of the murine metallothionein (MtI) gene (ß‐Lac/hFVIII‐MtI). Founders transmitted the transgene in a Mendelian fashion and two transgenic lines were generated. Ten out of 12 transgenic F1‐females expressed rhFVIII mRNA in exfoliated mammary epithelial cells isolated from the milk. But only in transgenic F1 ewes 4010 and 603 hFVIII clotting activity estimated at 4–6 ng/ml was detected in defatted milk. Furthermore, the presence of rhFVIII‐protein in ovine milk was demonstrated by a specific band at approximately 190 kD following immunoprecipitation and immunoblotting. Transgenic founder 395 expressed rhFVIII mRNA in biopsied mammary gland tissue, in exfoliated mammary cells as well as ectopically in brain, heart, spleen, kidney and salivary gland, suggesting that the employed ß‐Lac promoter fragment lacks essential sequences for directing expression exclusively to the mammary gland. A rhFVIII standard preparation (rhFVIIIstd) was rapidly sequestered in a saturable fashion in ovine milk, thus rendering it largely inaccessible to immunoprecipitation although its biological activity was retained. Recovery of hFVIIIstd was dependent on milk donor, storage temperature and dilution of milk sample.
Xenotransplantation | 2009
Björn Petersen; Wolf Ramackers; Andreas Tiede; Andrea Lucas-Hahn; Doris Herrmann; Brigitte Barg-Kues; Wolfgang Schuettler; Lars Friedrich; Reinhard Schwinzer; Michael Winkler; Heiner Niemann
Petersen B, Ramackers W, Tiede A, Lucas‐Hahn A, Herrmann D, Barg‐Kues B, Schuettler W, Friedrich L, Schwinzer R, Winkler M, Niemann H. Pigs transgenic for human thrombomodulin have elevated production of activated protein C. Xenotransplantation 2009; 16: 486–495.
Biology of Reproduction | 2003
C. Wrenzycki; Doris Herrmann; Heiner Niemann
Abstract Blastocyst formation and expansion are dependent on the differentiation and function of a proper transport of nutrients through the trophectoderm (TE) enclosing the inner cell mass (ICM). Coincident with compaction and cavitation, glucose becomes the preferred energy substrate of the early embryo. These hallmarks in early development require well-orchestrated gene expression patterns specifically with regard to timing and localization. The present study investigated the relative abundance (RA) of gene transcripts in the two lineages of in vitro-produced expanded bovine blastocysts in relation to timing of development, i.e., blastocyst expansion and localization of specific mRNAs. Expanded blastocysts from either Day 7 or Day 8 or isolated ICMs derived thereof were analyzed with the aid of a semiquantitative reverse transcriptase-polymerase chain reaction assay for gene transcripts, which are thought to play a pivotal role in blastocyst expansion, i.e., Na/K-ATPase α1 subunit (Na/K), E-cadherin (E-cad), zonula occludens protein-1 (ZO-1), desmocollin II (Dc II), plakophilin (Plako), trophoblastic function (interferon τ [IFτ]), and glucose transport (glucose transporter-1, -3, -4 [Glut-1, -3, -4]). Total cell number, ICM cell number, or ICM/total cells ratio were similar in Day 7 and Day 8 expanded blastocysts. Significant differences were determined in the RA for Na/K, E-cad, Dc II, Plako, and ZO-1 transcripts between TE cells of expanded blastocysts derived from either Day 7 or Day 8. The RA of Dc II, Glut-1, and Glut-4 was significantly decreased in the ICM compared with the TE at Day 7. Similarly, the RA of Na/K, Dc II, Glut-1, and Glut-4 at Day 8 of development was significantly decreased in the ICM compared with the TE. Interestingly, no differences were observed when comparing ICMs originating from blastocysts expanded at either Day 7 or Day 8. Plako and IFτ transcripts were not detected in isolated ICMs, indicating that expression of these mRNAs is restricted to the TE. In contrast, similar expression patterns within the ICM and TE were determined for Na/K, E-cad, ZO-1, and Glut-3 mRNA. Dc II, Glut-1, and Glut-4 were more abundant in the TE than in ICM. Results show that expression of developmentally important genes is related to the two cell lineages in the early embryo and emphasize the critical role of a well controlled spatial gene expression pattern for regular preimplantation development.