Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Doris Riether is active.

Publication


Featured researches published by Doris Riether.


Bioorganic & Medicinal Chemistry Letters | 2009

5-Aminomethylbenzimidazoles as potent ITK antagonists

Doris Riether; Renee M. Zindell; Jennifer A. Kowalski; Brian Nicholas Cook; Jörg Bentzien; Stephane De Lombaert; David S. Thomson; Stanley Kugler; Donna Skow; Leslie Martin; Ernest L. Raymond; Hnin Hnin Khine; Kathy O’Shea; Joseph R. Woska; Deborah D. Jeanfavre; Rosemarie Sellati; Kerry L. M. Ralph; Jennifer Ahlberg; Gabriel Labissiere; Mohammed A. Kashem; Steven S. Pullen; Hidenori Takahashi

Benzamide 1 demonstrated good potency as a selective ITK inhibitor, however the amide moiety was found to be hydrolytically labile in vivo, resulting in low oral exposure and the generation of mutagenic aromatic amine metabolites. Replacing the benzamide with a benzylamine linker not only addressed the toxicity issue, but also improved the cellular and functional potency as well as the drug-like properties. SAR studies around the benzylamines and the identification of 10n and 10o as excellent tools for proof-of-concept studies are described.


Journal of Medicinal Chemistry | 2010

Nonsteroidal Dissociated Glucocorticoid Agonists Containing Azaindoles as Steroid A-Ring Mimetics

Doris Riether; Christian Harcken; Hossein Razavi; Daniel Kuzmich; Thomas A. Gilmore; Jörg Bentzien; Edward J. Pack; Donald Souza; Richard M. Nelson; Alison Kukulka; Tazmeen N. Fadra; Ljiljana Zuvela-Jelaska; Josephine Pelletier; Roger M. Dinallo; Mark Panzenbeck; Carol Torcellini; Gerald H. Nabozny; David S. Thomson

Syntheses and structure-activity relationships (SAR) of nonsteroidal glucocorticoid receptor (GR) agonists are described. These compounds contain azaindole moieties as A-ring mimetics and display various degrees of in vitro dissociation between gene transrepression and transactivation. Collagen induced arthritis studies in mouse have demonstrated that in vitro dissociated compounds (R)-16 and (R)-37 have steroid-like anti-inflammatory properties with improved metabolic side effect profiles, such as a reduced increase in body fat and serum insulin levels, compared to steroids.


Bioorganic & Medicinal Chemistry Letters | 2008

Arylsulfonamide CB2 receptor agonists: SAR and optimization of CB2 selectivity.

Monika Ermann; Doris Riether; Edward Walker; Innocent Mushi; James Edward Jenkins; Beatriz Noya-Marino; Mark L. Brewer; Malcolm Taylor; Patricia Amouzegh; Stephen Peter East; Brian W. Dymock; Mark J. Gemkow; Andreas Kahrs; Andreas Ebneth; Sabine Löbbe; Kathy O’Shea; Daw-Tsun Shih; David S. Thomson

A high-throughput screening campaign resulted in the discovery of a highly potent dual cannabinoid receptor 1 (CB1) and 2 (CB2) agonist. Following a thorough SAR exploration, a series of selective CB2 full agonists were identified.


Expert Opinion on Therapeutic Patents | 2012

Selective cannabinoid receptor 2 modulators: a patent review 2009 – present

Doris Riether

Introduction: The activation of the cannabinoid receptor 2 (CB2) affects a myriad of immune responses from inflammation to neuroprotection, demonstrates analgesic effects and suppresses responses in many animal models of pain. Questions around the involvement of CB1 activation in these effects remain, but efforts have been directed toward the discovery of highly selective CB2 modulators lacking the psychotropic effects of cannabinoids, which are mediated by the CB1 receptor. Areas covered: This review covers the patent literature which was published since April 2009 on CB2 selective modulators. It provides a general summary of the CB2 biology supporting the interest in CB2 as a drug target, new potential therapeutic indications and the development status of selective CB2 agonists. Expert opinion: There is a continuous interest in the CB2 receptor as a drug target. Many highly selective compounds of various chemotypes have been identified and their analgesic effects in animal models further support the potential of this mechanism in pain therapy. Several companies have initiated clinical trials. While some of these have been terminated for various reasons, one can anticipate the emergence of new drugs from CB2 modulation once a better understanding around the cannabinoid receptors is gained.


Journal of Medicinal Chemistry | 2015

Synthesis, SAR, and series evolution of novel oxadiazole-containing 5-lipoxygenase activating protein inhibitors: discovery of 2-[4-(3-{(r)-1-[4-(2-amino-pyrimidin-5-yl)-phenyl]-1-cyclopropyl-ethyl}-[1,2,4]oxadiazol-5-yl)-pyrazol-1-yl]-N,N-dimethyl-acetamide (BI 665915).

Hidenori Takahashi; Doris Riether; Alessandra Bartolozzi; Todd Bosanac; Valentina Berger; Ralph Binetti; John Alan Broadwater; Zhidong Chen; Rebecca Crux; Stéphane De Lombaert; Rajvee Dave; Jonathon Alan Dines; Tazmeen Fadra-Khan; Adam Flegg; Michael Garrigou; Ming-Hong Hao; John D. Huber; J. Matthew Hutzler; Steven Kerr; Adrian Kotei Kotey; Weimin Liu; Ho Yin Lo; Pui Leng Loke; Paige E. Mahaney; Tina Morwick; Spencer Napier; Alan Olague; Edward J. Pack; Anil K. Padyana; David S. Thomson

The synthesis, structure-activity relationship (SAR), and evolution of a novel series of oxadiazole-containing 5-lipoxygenase-activating protein (FLAP) inhibitors are described. The use of structure-guided drug design techniques provided compounds that demonstrated excellent FLAP binding potency (IC50 < 10 nM) and potent inhibition of LTB4 synthesis in human whole blood (IC50 < 100 nM). Optimization of binding and functional potencies, as well as physicochemical properties resulted in the identification of compound 69 (BI 665915) that demonstrated an excellent cross-species drug metabolism and pharmacokinetics (DMPK) profile and was predicted to have low human clearance. In addition, 69 was predicted to have a low risk for potential drug-drug interactions due to its cytochrome P450 3A4 profile. In a murine ex vivo whole blood study, 69 demonstrated a linear dose-exposure relationship and a dose-dependent inhibition of LTB4 production.


Bioorganic & Medicinal Chemistry Letters | 2009

Morpholine containing CB2 selective agonists.

Renee M. Zindell; Doris Riether; Todd Bosanac; Angela Berry; Mark J. Gemkow; Andreas Ebneth; Sabine Löbbe; Ernest L. Raymond; Diane Thome; Daw-Tsun Shih; David S. Thomson

Identification and optimization of two classes of CB2 selective agonists are described. A representative from each class is profiled in a murine model of inflammation and each shows similar efficacy to prednisolone upon oral dosing.


Bioorganic & Medicinal Chemistry Letters | 2011

1,4-Diazepane compounds as potent and selective CB2 agonists: optimization of metabolic stability.

Doris Riether; Lifen Wu; Pier F. Cirillo; Angela Berry; Edward Walker; Monika Ermann; Beatriz Noya-Marino; James Edward Jenkins; Dan Albaugh; Claudia Albrecht; Michael B. Fisher; Mark J. Gemkow; Heather Grbic; Sabine Löbbe; Clemens Möller; Kathy O’Shea; Achim Sauer; Daw-Tsun Shih; David S. Thomson

A high-throughput screening campaign has identified 1,4-diazepane compounds which are potent Cannabinoid receptor 2 agonists with excellent selectivity against the Cannabinoid receptor 1. This class of compounds suffered from low metabolic stability. Following various strategies, compounds with a good stability in liver microsomes and rat PK profile have been identified.


Bioorganic & Medicinal Chemistry Letters | 2015

Selective CB2 receptor agonists. Part 1: The identification of novel ligands through computer-aided drug design (CADD) approaches

Eugene R. Hickey; Renee M. Zindell; Pier F. Cirillo; Lifen Wu; Monika Ermann; Angela Berry; David S. Thomson; Claudia Albrecht; Mark J. Gemkow; Doris Riether

Computer-aided drug design scaffold hopping strategies were utilized to identify new classes of CB2 agonists when compounds of an established series with low nanomolar potency were challenging to optimize for good drug-like properties. Use of ligand-based design strategies through BI Builder (a tool for de novo design) and PharmShape (a virtual screening software package) approaches led to the discovery of new chemotypes. Specifically, compounds containing azetidine-, proline-, and piperidine-based cores were found to have low nanomolar and picomolar CB2 agonist activities with drug-like properties considered appropriate for early profiling.


Bioorganic & Medicinal Chemistry Letters | 2014

Discovery of a potent and dissociated non-steroidal glucocorticoid receptor agonist containing an alkyl carbinol pharmacophore.

Hossein Razavi; Doris Riether; Christian Harcken; Jörg Bentzien; Roger M. Dinallo; Donald Souza; Richard M. Nelson; Alison Kukulka; Tazmeen Fadra-Khan; Edward J. Pack; Ljiljana Zuvela-Jelaska; Josephine Pelletier; Mark Panzenbeck; Carol Torcellini; John R. Proudfoot; Gerald Nabozny; David S. Thomson

Synthesis and structure-activity relationship (SAR) of a series of alkyl and cycloalkyl containing non-steroidal dissociated glucocorticoid receptor (GR) agonists is reported. This series of compounds was identified as part of an effort to replace the CF3 group in a scaffold represented by 1a. The study culminated in the identification of compound 14, a t-butyl containing derivative, which has shown potent activity for GR, selectivity against the progesterone receptor (PR) and the mineralocorticoid receptor (MR), in vitro anti-inflammatory activity in an IL-6 transrepression assay, and dissociation in a MMTV transactivation counter-screen. In a collagen-induced arthritis mouse model, 14 displayed prednisolone-like efficacy, and lower impact on body fat and free fatty acids than prednisolone at an equivalent anti-inflammatory dose.


Bioorganic & Medicinal Chemistry Letters | 2011

Aryl 1,4-diazepane compounds as potent and selective CB2 agonists: optimization of drug-like properties and target independent parameters.

Renee M. Zindell; Edward Walker; John Scott; Patricia Amouzegh; Lifen Wu; Monika Ermann; David S. Thomson; Micheal B. Fisher; Cody Lee Fullenwider; Heather Grbic; Paul Kaplita; Brian Linehan; Mita Patel; Monica Patel; Sabine Löbbe; Svenja Block; Claudia Albrecht; Mark J. Gemkow; Daw-Tsun Shih; Doris Riether

A high throughput screening campaign identified aryl 1,4-diazepane compounds as potent and selective cannabinoid receptor 2 agonists as compared to cannabinoid receptor 1. This class of compounds suffered from poor drug-like parameters as well as low microsomal stability and poor solubility. Structure-activity relationships are described with a focus on improving the drug-like parameters resulting in compounds with improved solubility and permeability.

Collaboration


Dive into the Doris Riether's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lifen Wu

Boehringer Ingelheim

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge