Dorota Bors
University of Łódź
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dorota Bors.
Multidimensional Systems and Signal Processing | 2012
Dorota Bors; Stanislaw Walczak
In the paper, a process of gas filtration described by the 2D system with controls is considered. Sufficient conditions for the existence of optimal process are proved.
Abstract and Applied Analysis | 2013
Dorota Bors
Some sufficient conditions for the nonlinear integral operator of the Hammerstein type to be a diffeomorphism defined on a certain Sobolev space are formulated. The main result assures the invertibility of the Hammerstein operator and in consequence the global solvability of the nonlinear Hammerstein equations. The applications of the result to nonlinear Dirichlet BVP involving the fractional Laplacian and to some specific Hammerstein equation are presented.
Nonlinear Analysis-theory Methods & Applications | 2003
Dorota Bors; Stanislaw Walczak
In this paper, a boundary value problem for elliptic systems is considered. Some sufficient conditions under which the solutions of this problem continuously depend on boundary data are proved.
The Scientific World Journal | 2014
Dorota Bors
We consider a class of partial differential equations with the fractional Laplacian and the homogeneous Dirichlet boundary data. Some sufficient condition under which the solutions of the equations considered depend continuously on parameters is stated. The application of the results to some optimal control problem is presented. The methods applied in the paper make use of the variational structure of the problem.
Discrete and Continuous Dynamical Systems-series B | 2014
Dorota Bors; Andrzej Skowron; Stanislaw Walczak
In the paper some sufficient condition for the nonlinear integral operator of the Volterra type to be a diffeomorphism defined on the space of absolutely continuous functions are formulated. The proof relies on consideration of the linearized equation together with Palais-Smale condition, thus a combination of topological and variational methods is used. The applications of the result to the control systems with feedback and to the specific nonlinear Volterra equation are presented.
Kybernetes | 2009
Dorota Bors; Marek Majewski
Purpose – The purpose of this paper is to present the sufficient condition for the controllability to the interval of the system defined by a nonlinear hyperbolic equation.Design/methodology/approach – The proof of the main theorem is based on the Miranda theorem which is a generalization of the Bolzano‐Weierstrass theorem.Findings – In the course of the work, it was found that under some assumptions a system is controllable to the interval with the aid of controls from the oblique interval spanned by the given controls. In the end of the paper, an example illustrating the proposed method is derived.Originality/value – This paper illustrates a procedure for finding a control which steers the system defined by a nonlinear hyperbolic equation to a given state.
2007 International Workshop on Multidimensional (nD) Systems | 2007
Dorota Bors; Marek Majewski; Stanislaw Walczak
In the paper sufficient conditions for the controllability to the interval of two-dimensional continuous Roesser system and one-dimensional continuous system are proved. The idea of proof is based on applying a lemma which is a multidimensional version of Bolzano-Poincare theorem.
Optimization | 2014
Dorota Bors; Marek Majewski
In this article, we consider an optimal control problem of Mayer type. We relax the standard growth condition imposed on the right-hand side of the equation of dynamics and provide an alternative approach to classical reasoning. Namely, we state some sufficient conditions for the existence of optimal solution for the aforementioned problem. An example illustrating controllability of an object with variable mass is also presented.
2009 International Workshop on Multidimensional (nD) Systems | 2009
Dorota Bors; Stanislaw Walczak
In this paper, we consider control systems governed by second order differential equations. Sufficient conditions for the existence of solutions and the corresponding stability criteria are proved. Moreover, conditions for the existence of optimal processes are presented. The systems under investigation have natural technical and physical interpretation. The method and results of the paper may be generalised to the continuous 2D systems.
Control and Cybernetics | 2005
Dorota Bors