Dorota Klepacki
University of Illinois at Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dorota Klepacki.
The EMBO Journal | 2010
Nora Vázquez-Laslop; Haripriya Ramu; Dorota Klepacki; Krishna Kannan; Alexander S. Mankin
The ribosome is able to monitor the structure of the nascent peptide and can stall in response to specific peptide sequences. Such programmed stalling is used for the regulation of gene expression. The molecular mechanisms of the nascent‐peptide recognition and ribosome stalling are unknown. We identified the conserved and posttranscriptionally modified 23S rRNA nucleotide m2A2503 located at the entrance of the ribosome exit tunnel as a key component of the ribosomal response mechanism. A2503 mutations abolish nascent‐peptide‐dependent stalling at the leader cistrons of several inducible antibiotic resistance genes and at the secM regulatory gene. Remarkably, lack of the C2 methylation of A2503 significantly function induction of expression of the ermC gene, indicating that the functional role of posttranscriptional modification is to fine‐tune ribosome–nascent peptide interactions. Structural and biochemical evidence suggest that m2A2503 may act in concert with the previously identified nascent‐peptide sensor, A2062, in the ribosome exit tunnel to relay the stalling signal to the peptidyl transferase centre.
Antimicrobial Agents and Chemotherapy | 2010
Beatriz Llano-Sotelo; Jack A. Dunkle; Dorota Klepacki; Wen Zhang; Prabhavathi Fernandes; Jamie H. D. Cate; Alexander S. Mankin
ABSTRACT We characterized the mechanism of action and the drug-binding site of a novel ketolide, CEM-101, which belongs to the latest class of macrolide antibiotics. CEM-101 shows high affinity for the ribosomes of Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The ketolide shows high selectivity in its inhibitory action and readily interferes with synthesis of a reporter protein in the bacterial but not eukaryotic cell-free translation system. Binding of CEM-101 to its ribosomal target site was characterized biochemically and by X-ray crystallography. The X-ray structure of CEM-101 in complex with the E. coli ribosome shows that the drug binds in the major macrolide site in the upper part of the ribosomal exit tunnel. The lactone ring of the drug forms hydrophobic interactions with the walls of the tunnel, the desosamine sugar projects toward the peptidyl transferase center and interacts with the A2058/A2509 cleft, and the extended alkyl-aryl arm of the drug is oriented down the tunnel and makes contact with a base pair formed by A752 and U2609 of the 23S rRNA. The position of the CEM-101 alkyl-aryl extended arm differs from that reported for the side chain of the ketolide telithromycin complexed with either bacterial (Deinococcus radiodurans) or archaeal (Haloarcula marismortui) large ribosomal subunits but closely matches the position of the side chain of telithromycin complexed to the E. coli ribosome. A difference in the chemical structure of the side chain of CEM-101 in comparison with the side chain of telithromycin and the presence of the fluorine atom at position 2 of the lactone ring likely account for the superior activity of CEM-101. The results of chemical probing suggest that the orientation of the CEM-101 extended side chain observed in the E. coli ribosome closely resembles its placement in Staphylococcus aureus ribosomes and thus likely accurately reflects interaction of CEM-101 with the ribosomes of the pathogenic bacterial targets of the drug. Chemical probing further demonstrated weak binding of CEM-101, but not of erythromycin, to the ribosome dimethylated at A2058 by the action of Erm methyltransferase.
Molecular Cell | 2011
Haripriya Ramu; Nora Vázquez-Laslop; Dorota Klepacki; Qing Dai; Joseph A. Piccirilli; Ronald Micura; Alexander S. Mankin
The ability to monitor the nascent peptide structure and to respond functionally to specific nascent peptide sequences is a fundamental property of the ribosome. An extreme manifestation of such response is nascent peptide-dependent ribosome stalling, involved in the regulation of gene expression. The molecular mechanisms of programmed translation arrest are unclear. By analyzing ribosome stalling at the regulatory cistron of the antibiotic resistance gene ermA, we uncovered a carefully orchestrated cooperation between the ribosomal exit tunnel and the A-site of the peptidyl transferase center (PTC) in halting translation. The presence of an inducing antibiotic and a specific nascent peptide in the exit tunnel abrogate the ability of the PTC to catalyze peptide bond formation with a particular subset of amino acids. The extent of the conferred A-site selectivity is modulated by the C-terminal segment of the nascent peptide, where the third-from-last residue plays a critical role.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Shanmugapriya Sothiselvam; Bo Liu; Wei Han; Haripriya Ramu; Dorota Klepacki; Gemma C. Atkinson; Age Brauer; Maido Remm; Tanel Tenson; Klaus Schulten; Nora Vázquez-Laslop; Alexander S. Mankin
Significance Translation arrest regulated by nascent peptides and small cofactors controls expression of important genes, including medically relevant macrolide antibiotic resistance genes. The role of the cofactor for triggering this mechanism has remained enigmatic. Previous studies suggested that extensive interactions between the nascent chain and the antibiotic molecule juxtaposed in the ribosomal exit tunnel were critical for halting translation. However, here we show that the antibiotic induces stalling, even without significant contacts with the peptide, by allosterically altering the peptidyl transferase center. This finding unveils a previously unknown role of cofactors for translation arrest and demonstrates the existence of a functional link between the exit tunnel and the catalytic center of the ribosome. Translation arrest directed by nascent peptides and small cofactors controls expression of important bacterial and eukaryotic genes, including antibiotic resistance genes, activated by binding of macrolide drugs to the ribosome. Previous studies suggested that specific interactions between the nascent peptide and the antibiotic in the ribosomal exit tunnel play a central role in triggering ribosome stalling. However, here we show that macrolides arrest translation of the truncated ErmDL regulatory peptide when the nascent chain is only three amino acids and therefore is too short to be juxtaposed with the antibiotic. Biochemical probing and molecular dynamics simulations of erythromycin-bound ribosomes showed that the antibiotic in the tunnel allosterically alters the properties of the catalytic center, thereby predisposing the ribosome for halting translation of specific sequences. Our findings offer a new view on the role of small cofactors in the mechanism of translation arrest and reveal an allosteric link between the tunnel and the catalytic center of the ribosome.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Nora Vázquez-Laslop; Dorota Klepacki; Debbie C. Mulhearn; Haripriya Ramu; Olga Krasnykh; Scott G. Franzblau; Alexander S. Mankin
Specific nascent peptides in the ribosome exit tunnel can elicit translation arrest. Such ribosome stalling is used for regulation of expression of some bacterial and eukaryotic genes. The stalling is sensitive to additional cellular cues, most commonly the binding of specific small-molecular-weight cofactors to the ribosome. The role of cofactors in programmed translation arrest is unknown. By analyzing nascent peptide- and antibiotic-dependent ribosome stalling that controls inducible expression of antibiotic resistance genes in bacteria, we have found that the antibiotic is directly recognized as a part of the translation modulating signal. Even minute structural alterations preclude it from assisting in ribosome stalling, indicating the importance of precise molecular interactions of the drug with the ribosome. One of the sensors that monitor the structure of the antibiotic is the 23S rRNA residue C2610, whose mutation reduces the efficiency of nascent peptide- and antibiotic-dependent ribosome stalling. These findings establish a new paradigm of the role of the cofactor in programmed translation arrest in which a small molecule is recognized along with specific nascent peptide sequences as a composite structure that provokes arrest of translation. A similar mechanism could be used by the ribosome to sense a variety of cellular metabolites.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Tamar Auerbach; Inbal Mermershtain; Chen Davidovich; Anat Bashan; Matthew J. Belousoff; Itai Wekselman; Ella Zimmerman; Liqun Xiong; Dorota Klepacki; Kenji Arakawa; Haruyasu Kinashi; Alexander S. Mankin; Ada Yonath
Crystallographic analysis revealed that the 17-member polyketide antibiotic lankacidin produced by Streptomyces rochei binds at the peptidyl transferase center of the eubacterial large ribosomal subunit. Biochemical and functional studies verified this finding and showed interference with peptide bond formation. Chemical probing indicated that the macrolide lankamycin, a second antibiotic produced by the same species, binds at a neighboring site, at the ribosome exit tunnel. These two antibiotics can bind to the ribosome simultaneously and display synergy in inhibiting bacterial growth. The binding site of lankacidin and lankamycin partially overlap with the binding site of another pair of synergistic antibiotics, the streptogramins. Thus, at least two pairs of structurally dissimilar compounds have been selected in the course of evolution to act synergistically by targeting neighboring sites in the ribosome. These results underscore the importance of the corresponding ribosomal sites for development of clinically relevant synergistic antibiotics and demonstrate the utility of structural analysis for providing new directions for drug discovery.
Nucleic Acids Research | 2013
Cédric Orelle; Teresa Szal; Dorota Klepacki; Karen J. Shaw; Nora Vázquez-Laslop; Alexander S. Mankin
Aminoacyl-transfer RNA (tRNA) synthetases (RS) are essential components of the cellular translation machinery and can be exploited for antibiotic discovery. Because cells have many different RS, usually one for each amino acid, identification of the specific enzyme targeted by a new natural or synthetic inhibitor can be cumbersome. We describe the use of the primer extension technique in conjunction with specifically designed synthetic genes to identify the RS targeted by an inhibitor. Suppression of a synthetase activity reduces the amount of the cognate aminoacyl-tRNA in a cell-free translation system resulting in arrest of translation when the corresponding codon enters the decoding center of the ribosome. The utility of the technique is demonstrated by identifying a switch in target specificity of some synthetic inhibitors of threonyl-tRNA synthetase.
Nature Chemical Biology | 2016
Pulkit Gupta; Bo Liu; Dorota Klepacki; Vrinda Gupta; Klaus Schulten; Alexander S. Mankin; Nora Vázquez-Laslop
Regulation of gene expression in response to the changing environment is critical for cell survival. For instance, binding of macrolide antibiotics to the ribosome promote the translation arrest at the leader ORFs ermCL and ermBL necessary for inducing antibiotic resistance genes ermC and ermB. Cladinose-containing macrolides, like erythromycin (ERY), but not ketolides e.g., telithromycin (TEL), arrest translation of ermCL, while either ERY or TEL stall ermBL translation. How the ribosome distinguishes between chemically similar small molecules is unknown. We show that single amino acid changes in the leader peptide switch the specificity of recognition of distinct molecules, triggering gene activation in response to only ERY, only TEL, to both antibiotics, or preventing stalling altogether. Thus, the ribosomal response to chemical signals can be modulated by minute changes in the nascent peptide, suggesting that protein sequences could have been optimized for rendering translation sensitive to environmental cues.
Nucleic Acids Research | 2014
Allyson K. Martínez; Emily Gordon; Arnab Sengupta; Nitin H. Shirole; Dorota Klepacki; Blanca Martinez-Garriga; Lewis M. Brown; Michael J. Benedik; Charles Yanofsky; Alexander S. Mankin; Nora Vázquez-Laslop; Matthew S. Sachs; Luis R. Cruz-Vera
A transcriptional attenuation mechanism regulates expression of the bacterial tnaCAB operon. This mechanism requires ribosomal arrest induced by the regulatory nascent TnaC peptide in response to free L-tryptophan (L-Trp). In this study we demonstrate, using genetic and biochemical analyses, that in Escherichia coli, TnaC residue I19 and 23S rRNA nucleotide A2058 are essential for the ribosome’s ability to sense free L-Trp. We show that the mutational change A2058U in 23S rRNA reduces the concentration dependence of L-Trp-mediated tna operon induction, whereas the TnaC I19L change suppresses this phenotype, restoring the sensitivity of the translating A2058U mutant ribosome to free L-Trp. These findings suggest that interactions between TnaC residue I19 and 23S rRNA nucleotide A2058 contribute to the creation of a regulatory L-Trp binding site within the translating ribosome.
Proceedings of the National Academy of Sciences of the United States of America | 2016
James Marks; Krishna Kannan; Emily Roncase; Dorota Klepacki; Amira Kefi; Cédric Orelle; Nora Vázquez-Laslop; Alexander S. Mankin
Significance Chloramphenicol and linezolid interfere with translation by targeting the ribosomal catalytic center and are viewed as universal inhibitors of peptide bond formation. We show that, contrary to this view, the activity of these antibiotics critically depends on the nature of specific amino acids of the nascent chain carried by the ribosome and by the identity of the residue entering the A site. These findings indicate that the nascent protein modulates the properties of the ribosomal catalytic center and affects binding of its ligands. Understanding the principles of context specificity of ribosomal drugs may help develop better antibiotics. The first broad-spectrum antibiotic chloramphenicol and one of the newest clinically important antibacterials, linezolid, inhibit protein synthesis by targeting the peptidyl transferase center of the bacterial ribosome. Because antibiotic binding should prevent the placement of aminoacyl-tRNA in the catalytic site, it is commonly assumed that these drugs are universal inhibitors of peptidyl transfer and should readily block the formation of every peptide bond. However, our in vitro experiments showed that chloramphenicol and linezolid stall ribosomes at specific mRNA locations. Treatment of bacterial cells with high concentrations of these antibiotics leads to preferential arrest of translation at defined sites, resulting in redistribution of the ribosomes on mRNA. Antibiotic-mediated inhibition of protein synthesis is most efficient when the nascent peptide in the ribosome carries an alanine residue and, to a lesser extent, serine or threonine in its penultimate position. In contrast, the inhibitory action of the drugs is counteracted by glycine when it is either at the nascent-chain C terminus or at the incoming aminoacyl-tRNA. The context-specific action of chloramphenicol illuminates the operation of the mechanism of inducible resistance that relies on programmed drug-induced translation arrest. In addition, our findings expose the functional interplay between the nascent chain and the peptidyl transferase center.